原题链接
最小割点数转换成最小割边数的模板题(不过这数据好小)。
每个点拆成两个点,连一条容量为(1)的边,原图的边容量定为(+infty),然后跑最大流即可。
这里用的是(Dinic)。
#include<cstdio>
#include<cstring>
using namespace std;
const int N = 220;
const int M = 5e3;
int fi[N], di[M], ne[M], da[M], de[N], q[N], cu[N], l = 1, st, ed;
inline int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c < '0' || c > '9'; c = getchar())
p |= c == '-';
for (; c >= '0' && c <= '9'; c = getchar())
x = x * 10 + c - '0';
return p ? -x : x;
}
inline void add(int x, int y, int z)
{
di[++l] = y;
da[l] = z;
ne[l] = fi[x];
fi[x] = l;
di[++l] = x;
da[l] = 0;
ne[l] = fi[y];
fi[y] = l;
}
inline int minn(int x, int y){ return x < y ? x : y; }
bool bfs()
{
int i, x, y, head = 0, tail = 1;
memset(de, 0, sizeof(de));
q[1] = st;
de[st] = 1;
while (head ^ tail)
{
x = q[++head];
for (i = fi[x]; i; i = ne[i])
if (!de[y = di[i]] && da[i] > 0)
{
de[y] = de[x] + 1;
if (!(y ^ ed))
return true;
q[++tail] = y;
}
}
return false;
}
int dfs(int x, int k)
{
if (!(x ^ ed))
return k;
int mi, y;
for (int &i = cu[x]; i; i = ne[i])
if (!(de[y = di[i]] ^ (de[x] + 1)) && da[i] > 0)
{
mi = dfs(y, minn(k, da[i]));
if (mi > 0)
{
da[i] -= mi;
da[i ^ 1] += mi;
return mi;
}
}
return 0;
}
int main()
{
int i, n, m, x, y, s = 0;
n = re();
m = re();
st = re() + n;
ed = re();
for (i = 1; i <= n; i++)
add(i, i + n, 1);
for (i = 1; i <= m; i++)
{
x = re();
y = re();
add(x + n, y, 1e9);
add(y + n, x, 1e9);
}
while (bfs())
{
for (i = 1; i <= (n << 1); i++)
cu[i] = fi[i];
for (; (x = dfs(st, 1e9)) > 0; s += x);
}
printf("%d", s);
return 0;
}