• 洛谷1345 [USACO5.4]奶牛的电信Telecowmunication


    原题链接

    最小割点数转换成最小割边数的模板题(不过这数据好小)。
    每个点拆成两个点,连一条容量为(1)的边,原图的边容量定为(+infty),然后跑最大流即可。
    这里用的是(Dinic)

    #include<cstdio>
    #include<cstring>
    using namespace std;
    const int N = 220;
    const int M = 5e3;
    int fi[N], di[M], ne[M], da[M], de[N], q[N], cu[N], l = 1, st, ed;
    inline int re()
    {
    	int x = 0;
    	char c = getchar();
    	bool p = 0;
    	for (; c < '0' || c > '9'; c = getchar())
    		p |= c == '-';
    	for (; c >= '0' && c <= '9'; c = getchar())
    		x = x * 10 + c - '0';
    	return p ? -x : x;
    }
    inline void add(int x, int y, int z)
    {
    	di[++l] = y;
    	da[l] = z;
    	ne[l] = fi[x];
    	fi[x] = l;
    	di[++l] = x;
    	da[l] = 0;
    	ne[l] = fi[y];
    	fi[y] = l;
    }
    inline int minn(int x, int y){ return x < y ? x : y; }
    bool bfs()
    {
    	int i, x, y, head = 0, tail = 1;
    	memset(de, 0, sizeof(de));
    	q[1] = st;
    	de[st] = 1;
    	while (head ^ tail)
    	{
    		x = q[++head];
    		for (i = fi[x]; i; i = ne[i])
    			if (!de[y = di[i]] && da[i] > 0)
    			{
    				de[y] = de[x] + 1;
    				if (!(y ^ ed))
    					return true;
    				q[++tail] = y;
    			}
    	}
    	return false;
    }
    int dfs(int x, int k)
    {
    	if (!(x ^ ed))
    		return k;
    	int mi, y;
    	for (int &i = cu[x]; i; i = ne[i])
    		if (!(de[y = di[i]] ^ (de[x] + 1)) && da[i] > 0)
    		{
    			mi = dfs(y, minn(k, da[i]));
    			if (mi > 0)
    			{
    				da[i] -= mi;
    				da[i ^ 1] += mi;
    				return mi;
    			}
    		}
    	return 0;
    }
    int main()
    {
    	int i, n, m, x, y, s = 0;
    	n = re();
    	m = re();
    	st = re() + n;
    	ed = re();
    	for (i = 1; i <= n; i++)
    		add(i, i + n, 1);
    	for (i = 1; i <= m; i++)
    	{
    		x = re();
    		y = re();
    		add(x + n, y, 1e9);
    		add(y + n, x, 1e9);
    	}
    	while (bfs())
    	{
    		for (i = 1; i <= (n << 1); i++)
    			cu[i] = fi[i];
    		for (; (x = dfs(st, 1e9)) > 0; s += x);
    	}
    	printf("%d", s);
    	return 0;
    }
    
  • 相关阅读:
    laravel的验证码
    laravel的中间件
    laravel的基本使用
    laravel的路由
    layui上传文件的choose只触发一次
    宝塔访问站点上一级目录
    orcale的几个查询
    tree的递归,适合与el-tree
    GIT 命令大全
    Oracle 时间戳与日期的转换
  • 原文地址:https://www.cnblogs.com/Iowa-Battleship/p/9911347.html
Copyright © 2020-2023  润新知