原题链接
因为在一个强连通分量里,所有间谍互相(直接或间接)都掌握着证据,所以只要有一个间谍被控制,那么这整个强连通分量里的间谍都被控制。
所以我们可以对其进行缩点,并记录该强连通分量里的愿意被收买的间谍所需要最小资金以及编号最小的间谍。
对于缩点后的(DAG),显然入度为(0)的点必须能被收买才可被控制,若全部入度为(0)的点都被收买,那么所以间谍肯定都能被控制。
因此,我们扫一遍所以入度为(0)的点,若能被收买则计入答案,否则说明间谍不能全被控制。
若能全部被收买,那么直接输出答案。
若不能,先扫过所有点,将所有能被收买的点标记,然后以能被收买的点为起点对整张图进行遍历,并标记能到达的点(即能被控制),最后扫过所有点记录不能被控制的间谍的最小编号即可。
#include<cstdio>
#include<cstring>
using namespace std;
const int N = 3010;
const int M = 8010;
struct eg{
int x, y;
};
eg a[M];
int fi[N], di[M], ne[M], va[N], cfi[N], cdi[M], cne[M], dfn[N], low[N], bl[N], sta[N], ru[N], mi_va[N], mi_id[N], q[M << 1], l, tp, ti, SCC, tail;
bool v[N];
inline int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c < '0' || c > '9'; c = getchar())
p |= c == '-';
for (; c >= '0' && c <= '9'; c = getchar())
x = x * 10 + c - '0';
return p ? -x : x;
}
inline void add(int x, int y)
{
di[++l] = y;
ne[l] = fi[x];
fi[x] = l;
}
inline void add_c(int x, int y)
{
cdi[++l] = y;
cne[l] = cfi[x];
cfi[x] = l;
}
inline int minn(int x, int y)
{
return x < y ? x : y;
}
void tarjan(int x)
{
int i, y;
dfn[x] = low[x] = ++ti;
sta[++tp] = x;
v[x] = 1;
for (i = fi[x]; i; i = ne[i])
if (!dfn[y = di[i]])
{
tarjan(y);
low[x] = minn(low[x], low[y]);
}
else
if (v[y])
low[x] = minn(low[x], dfn[y]);
if (!(dfn[x] ^ low[x]))
{
SCC++;
do
{
y = sta[tp--];
bl[y] = SCC;
v[y] = 0;
mi_va[SCC] = minn(mi_va[SCC], va[y]);
mi_id[SCC] = minn(mi_id[SCC], y);
} while (x ^ y);
}
}
void bfs()
{
int i, x, y, head = 0;
memset(v, 0, sizeof(v));
while (head ^ tail)
{
x = q[++head];
v[x] = 1;
for (i = cfi[x]; i; i = cne[i])
if (!v[y = di[i]])
q[++tail] = y;
}
}
int main()
{
int i, n, m, x, y, k, s = 0;
bool p = 0;
n = re();
k = re();
memset(va, 60, sizeof(va));
for (i = 1; i <= k; i++)
{
x = re();
va[x] = re();
}
m = re();
for (i = 1; i <= m; i++)
{
a[i].x = re();
a[i].y = re();
add(a[i].x, a[i].y);
}
memset(mi_va, 60, sizeof(mi_va));
memset(mi_id, 60, sizeof(mi_id));
for (i = 1; i <= n; i++)
if (!dfn[i])
tarjan(i);
for (i = 1; i <= m; i++)
{
x = bl[a[i].x];
y = bl[a[i].y];
if (x ^ y)
{
ru[y]++;
add_c(x, y);
}
}
for (i = 1; i <= SCC && !p; i++)
if (!ru[i])
{
if (mi_va[i] < 1e8)
s += mi_va[i];
else
p = 1;
}
if (p)
{
for (i = 1; i <= SCC; i++)
if (mi_va[i] < 1e8)
q[++tail] = i;
printf("NO
");
int mi = 1e9;
bfs();
for (i = 1; i <= SCC; i++)
if (!v[i])
mi = minn(mi, mi_id[i]);
printf("%d", mi);
}
else
printf("YES
%d", s);
return 0;
}