• Hadoop Yarn 框架原理及运作机制及与MapReduce比较


     

    Hadoop 和 MRv1 简单介绍

    Hadoop 集群可从单一节点(其中所有 Hadoop 实体都在同一个节点上运行)扩展到数千个节点(其中的功能分散在各个节点之间,以增加并行处理活动)。图 1 演示了一个 Hadoop 集群的高级组件。 

     

    1. Hadoop 集群架构的简单演示 

    一个 Hadoop 集群可分解为两个抽象实体:MapReduce 引擎和分布式文件系统。MapReduce 引擎能够在整个集群上执行 Map 和 Reduce 任务并报告结果,其中分布式文件系统提供了一种存储模式,可跨节点复制数据以进行处理。Hadoop 分布式文件系统 (HDFS) 通过定义来支持大型文件(其中每个文件通常为 64 MB 的倍数)。

    当一个客户端向一个 Hadoop 集群发出一个请求时,此请求由 JobTracker 管理。JobTracker 与 NameNode 联合将工作分发到离它所处理的数据尽可能近的位置。NameNode 是文件系统的主系统,提供元数据服务来执行数据分发和复制。JobTracker 将 Map 和 Reduce 任务安排到一个或多个 TaskTracker 上的可用插槽中。TaskTracker 与 DataNode(分布式文件系统)一起对来自 DataNode 的数据执行 Map 和 Reduce 任务。当 Map 和 Reduce 任务完成时,TaskTracker 会告知 JobTracker,后者确定所有任务何时完成并最终告知客户作业已完成。

    1 中可以看到,MRv1 实现了一个相对简单的集群管理器来执行 MapReduce 处理。MRv1 提供了一种分层的集群管理模式,其中大数据作业以单个 Map 和 Reduce 任务的形式渗入一个集群,并最后聚合成作业来报告给用户。但这种简单性有一些隐秘,不过也不是很隐秘的问题。 

    MRv1 的缺陷

    MapReduce 的第一个版本既有优点也有缺点。MRv1 是目前使用的标准的大数据处理系统。但是,这种架构存在不足,主要表现在大型集群上。当集群包含的节点超过 4,000 个时(其中每个节点可能是多核的),就会表现出一定的不可预测性。其中一个最大的问题是级联故障,由于要尝试复制数据和重载活动的节点,所以一个故障会通过网络泛洪形式导致整个集群严重恶化。

    MRv1 的最大问题是多租户。随着集群规模的增加,一种可取的方式是为这些集群采用各种不同的模型。MRv1 的节点专用于 Hadoop,所以可以改变它们的用途以用于其他应用程序和工作负载。当大数据和 Hadoop 成为云部署中一个更重要的使用模型时,这种能力也会增强,因为它允许在服务器上对 Hadoop 进行物理化,而无需虚拟化且不会增加管理、计算和输入/输出开销。

    我们现在看看 YARN 的新架构,看看它如何支持 MRv2 和其他使用不同处理模型的应用程序

     

    1.1 YARN 基本架构

    YARN是Hadoop 2.0中的资源管理系统,它的基本设计思想是将MRv1中的JobTracker拆分成了两个独立的服务:一个全局的资源管理器ResourceManager和每个应用程序特有的ApplicationMaster。

    其中ResourceManager负责整个系统的资源管理和分配,而ApplicationMaster负责单个应用程序的管理。

     

    1.2 YARN基本组成结构

    YARN总体上仍然是Master/Slave结构,在整个资源管理框架中,ResourceManager为Master,NodeManager为Slave,ResourceManager负责对各个NodeManager上的资源进行统一管理和调度。当用户提交一个应用程序时,需要提供一个用以跟踪和管理这个程序的ApplicationMaster,它负责向ResourceManager申请资源,并要求NodeManger启动可以占用一定资源的任务。由于不同的ApplicationMaster被分布到不同的节点上,因此它们之间不会相互影响。在本小节中,我们将对YARN的基本组成结构进行介绍。

    图2-9描述了YARN的基本组成结构,YARN主要由ResourceManager、NodeManager、ApplicationMaster(图中给出了MapReduce和MPI两种计算框架的ApplicationMaster,分别为MR AppMstr和MPI AppMstr)和Container等几个组件构成。

     

     

    1.ResourceManager(RM)

    RM是一个全局的资源管理器,负责整个系统的资源管理和分配。它主要由两个组件构成:调度器(Scheduler)和应用程序管理器(Applications Manager,ASM)。

    (1)调度器

    调度器根据容量、队列等限制条件(如每个队列分配一定的资源,最多执行一定数量的作业等),将系统中的资源分配给各个正在运行的应用程序。

    需要注意的是,该调度器是一个“纯调度器”,它不再从事任何与具体应用程序相关的工作,比如不负责监控或者跟踪应用的执行状态等,也不负责重新启动因应用执行失败或者硬件故障而产生的失败任务,这些均交由应用程序相关的ApplicationMaster完成。调度器仅根据各个应用程序的资源需求进行资源分配,而资源分配单位用一个抽象概念“资源容器”(Resource Container,简称Container)表示,Container是一个动态资源分配单位,它将内存、CPU、磁盘、网络等资源封装在一起,从而限定每个任务使用的资源量。此外,该调度器是一个可插拔的组件,用户可根据自己的需要设计新的调度器,YARN提供了多种直接可用的调度器,比如Fair Scheduler和Capacity Scheduler等。

     

    (2) 应用程序管理器

    应用程序管理器负责管理整个系统中所有应用程序,包括应用程序提交、与调度器协商资源以启动ApplicationMaster、监控ApplicationMaster运行状态并在失败时重新启动它等。

     

    2. ApplicationMaster(AM)

    用户提交的每个应用程序均包含1个AM,主要功能包括:

    与RM调度器协商以获取资源(用Container表示);

    将得到的任务进一步分配给内部的任务;

    与NM通信以启动/停止任务;

    监控所有任务运行状态,并在任务运行失败时重新为任务申请资源以重启任务。

    当前YARN自带了两个AM实现,一个是用于演示AM编写方法的实例程序distributedshell,它可以申请一定数目的Container以并行运行一个Shell命令或者Shell脚本;另一个是运行MapReduce应用程序的AM—MRAppMaster,我们将在第8章对其进行介绍。此外,一些其他的计算框架对应的AM正在开发中,比如Open MPI、Spark等。

    3. NodeManager(NM)

    NM是每个节点上的资源和任务管理器,一方面,它会定时地向RM汇报本节点上的资源使用情况和各个Container的运行状态;另一方面,它接收并处理来自AM的Container启动/停止等各种请求

    4. Container

    Container是YARN中的资源抽象,它封装了某个节点上的多维度资源,如内存、CPU、磁盘、网络等,当AM向RM申请资源时,RM为AM返回的资源便是用Container表示的。YARN会为每个任务分配一个Container,且该任务只能使用该Container中描述的资源。

    需要注意的是,Container不同于MRv1中的slot,它是一个动态资源划分单位,是根据应用程序的需求动态生成的。截至本书完成时,YARN仅支持CPU和内存两种资源,且使用了轻量级资源隔离机制Cgroups进行资源隔离。

     

    1.3  YARN工作流程

    当用户向YARN中提交一个应用程序后,YARN将分两个阶段运行该应用程序:

    第一个阶段是启动ApplicationMaster;

    第二个阶段是由ApplicationMaster创建应用程序,为它申请资源,并监控它的整个运行过程,直到运行完成。

    如图2-11所示,YARN的工作流程分为以下几个步骤:

         

     

    步骤1 用户向YARN中提交应用程序,其中包括ApplicationMaster程序、启动ApplicationMaster的命令、用户程序等。

    步骤2 ResourceManager为该应用程序分配第一个Container,并与对应的Node-Manager通信,要求它在这个Container中启动应用程序的ApplicationMaster。

    步骤3 ApplicationMaster首先向ResourceManager注册,这样用户可以直接通过ResourceManager查看应用程序的运行状态,然后它将为各个任务申请资源,并监控它的运行状态,直到运行结束,即重复步骤4~7。

    步骤4 ApplicationMaster采用轮询的方式通过RPC协议向ResourceManager申请和领取资源。

    步骤5 一旦ApplicationMaster申请到资源后,便与对应的NodeManager通信,要求它启动任务。

    步骤6 NodeManager为任务设置好运行环境(包括环境变量、JAR包、二进制程序等)后,将任务启动命令写到一个脚本中,并通过运行该脚本启动任务。

    步骤7 各个任务通过某个RPC协议向ApplicationMaster汇报自己的状态和进度,以让ApplicationMaster随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务。

         在应用程序运行过程中,用户可随时通过RPC向ApplicationMaster查询应用程序的当前运行状态。

     

    步骤8 应用程序运行完成后,ApplicationMaster向ResourceManager注销并关闭自己。

     

    1.4 多角度理解YARN

    可将YARN看做一个云操作系统,它负责为应用程序启动ApplicationMaster(相当于主线程),然后再由ApplicationMaster负责数据切分、任务分配、启动和监控等工作,而由ApplicationMaster启动的各个Task(相当于子线程)仅负责自己的计算任务。当所有任务计算完成后,ApplicationMaster认为应用程序运行完成,然后退出。

       

  • 相关阅读:
    手撕RPC框架
    关于JVM的一些冷知识
    luoguP2627 修剪草坪
    [USACO16OPEN]248
    luoguP1171 售货员的难题
    luoguP2016 战略游戏
    luoguP2422 良好的感觉
    POJ1160 [IOI2000]Post Office
    luoguP2015 二叉苹果树
    BZOJ1756 小白逛公园
  • 原文地址:https://www.cnblogs.com/ITxiaojiayu/p/6024505.html
Copyright © 2020-2023  润新知