• Python多进程multiprocessing使用示例


    mutilprocess简介

    像线程一样管理进程,这个是mutilprocess的核心,他与threading很是相像,对多核CPU的利用率会比threading好的多。

    import multiprocessing
    
    def worker(num):
        """thread worker function"""
        print 'Worker:', num
        return
    
    if __name__ == '__main__':
        jobs = []
        for i in range(5):
            p = multiprocessing.Process(target=worker, args=(i,))
            jobs.append(p)
            p.start()
    简单的创建进程

    确定当前的进程,即是给进程命名,方便标识区分,跟踪

    import multiprocessing
    import time
    
    def worker():
        name = multiprocessing.current_process().name
        print name, 'Starting'
        time.sleep(2)
        print name, 'Exiting'
    
    def my_service():
        name = multiprocessing.current_process().name
        print name, 'Starting'
        time.sleep(3)
        print name, 'Exiting'
    
    if __name__ == '__main__':
        service = multiprocessing.Process(name='my_service',
                                          target=my_service)
        worker_1 = multiprocessing.Process(name='worker 1',
                                           target=worker)
        worker_2 = multiprocessing.Process(target=worker) # default name
    
        worker_1.start()
        worker_2.start()
        service.start()
    View Code

    守护进程就是不阻挡主程序退出,自己干自己的 mutilprocess.setDaemon(True)就这句等待守护进程退出,要加上join,join可以传入浮点数值,等待n久就不等了

    import multiprocessing
    import time
    import sys
    
    def daemon():
        name = multiprocessing.current_process().name
        print 'Starting:', name
        time.sleep(2)
        print 'Exiting :', name
    
    def non_daemon():
        name = multiprocessing.current_process().name
        print 'Starting:', name
        print 'Exiting :', name
    
    if __name__ == '__main__':
        d = multiprocessing.Process(name='daemon',
                                    target=daemon)
        d.daemon = True
    
        n = multiprocessing.Process(name='non-daemon',
                                    target=non_daemon)
        n.daemon = False
    
        d.start()
        n.start()
    
        d.join(1)
        print 'd.is_alive()', d.is_alive()
        n.join()
    守护进程

    最好使用 poison pill,强制的使用terminate()注意 terminate之后要join,使其可以更新状态

    import multiprocessing
    import time
    
    def slow_worker():
        print 'Starting worker'
        time.sleep(0.1)
        print 'Finished worker'
    
    if __name__ == '__main__':
        p = multiprocessing.Process(target=slow_worker)
        print 'BEFORE:', p, p.is_alive()
    
        p.start()
        print 'DURING:', p, p.is_alive()
    
        p.terminate()
        print 'TERMINATED:', p, p.is_alive()
    
        p.join()
        print 'JOINED:', p, p.is_alive()
    终止进程
    1. == 0 未生成任何错误  
    2. 0 进程有一个错误,并以该错误码退出
    3. < 0 进程由一个-1 * exitcode信号结束
    import multiprocessing
    import sys
    import time
    
    def exit_error():
        sys.exit(1)
    
    def exit_ok():
        return
    
    def return_value():
        return 1
    
    def raises():
        raise RuntimeError('There was an error!')
    
    def terminated():
        time.sleep(3)
    
    if __name__ == '__main__':
        jobs = []
        for f in [exit_error, exit_ok, return_value, raises, terminated]:
            print 'Starting process for', f.func_name
            j = multiprocessing.Process(target=f, name=f.func_name)
            jobs.append(j)
            j.start()
    
        jobs[-1].terminate()
    
        for j in jobs:
            j.join()
            print '%15s.exitcode = %s' % (j.name, j.exitcode)
    进程的退出状态

    方便的调试,可以用logging

    import multiprocessing
    import logging
    import sys
    
    def worker():
        print 'Doing some work'
        sys.stdout.flush()
    
    if __name__ == '__main__':
        multiprocessing.log_to_stderr()
        logger = multiprocessing.get_logger()
        logger.setLevel(logging.INFO)
        p = multiprocessing.Process(target=worker)
        p.start()
        p.join()
    日志

    利用class来创建进程,定制子类

    import multiprocessing
    
    class Worker(multiprocessing.Process):
    
        def run(self):
            print 'In %s' % self.name
            return
    
    if __name__ == '__main__':
        jobs = []
        for i in range(5):
            p = Worker()
            jobs.append(p)
            p.start()
        for j in jobs:
            j.join()
    派生进程
    import multiprocessing
    
    class MyFancyClass(object):
    
        def __init__(self, name):
            self.name = name
    
        def do_something(self):
            proc_name = multiprocessing.current_process().name
            print 'Doing something fancy in %s for %s!' % 
                (proc_name, self.name)
    
    def worker(q):
        obj = q.get()
        obj.do_something()
    
    if __name__ == '__main__':
        queue = multiprocessing.Queue()
    
        p = multiprocessing.Process(target=worker, args=(queue,))
        p.start()
    
        queue.put(MyFancyClass('Fancy Dan'))
    
        # Wait for the worker to finish
        queue.close()
        queue.join_thread()
        p.join()
    
    import multiprocessing
    import time
    
    class Consumer(multiprocessing.Process):
    
        def __init__(self, task_queue, result_queue):
            multiprocessing.Process.__init__(self)
            self.task_queue = task_queue
            self.result_queue = result_queue
    
        def run(self):
            proc_name = self.name
            while True:
                next_task = self.task_queue.get()
                if next_task is None:
                    # Poison pill means shutdown
                    print '%s: Exiting' % proc_name
                    self.task_queue.task_done()
                    break
                print '%s: %s' % (proc_name, next_task)
                answer = next_task()
                self.task_queue.task_done()
                self.result_queue.put(answer)
            return
    
    class Task(object):
        def __init__(self, a, b):
            self.a = a
            self.b = b
        def __call__(self):
            time.sleep(0.1) # pretend to take some time to do the work
            return '%s * %s = %s' % (self.a, self.b, self.a * self.b)
        def __str__(self):
            return '%s * %s' % (self.a, self.b)
    
    if __name__ == '__main__':
        # Establish communication queues
        tasks = multiprocessing.JoinableQueue()
        results = multiprocessing.Queue()
    
        # Start consumers
        num_consumers = multiprocessing.cpu_count() * 2
        print 'Creating %d consumers' % num_consumers
        consumers = [ Consumer(tasks, results)
                      for i in xrange(num_consumers) ]
        for w in consumers:
            w.start()
    
        # Enqueue jobs
        num_jobs = 10
        for i in xrange(num_jobs):
            tasks.put(Task(i, i))
    
        # Add a poison pill for each consumer
        for i in xrange(num_consumers):
            tasks.put(None)
    
        # Wait for all of the tasks to finish
        tasks.join()
    
        # Start printing results
        while num_jobs:
            result = results.get()
            print 'Result:', result
            num_jobs -= 1
    python进程间传递消息

    Event提供一种简单的方法,可以在进程间传递状态信息。事件可以切换设置和未设置状态。通过使用一个可选的超时值,时间对象的用户可以等待其状态从未设置变为设置。

    import multiprocessing
    import time
    
    def wait_for_event(e):
        """Wait for the event to be set before doing anything"""
        print 'wait_for_event: starting'
        e.wait()
        print 'wait_for_event: e.is_set()->', e.is_set()
    
    def wait_for_event_timeout(e, t):
        """Wait t seconds and then timeout"""
        print 'wait_for_event_timeout: starting'
        e.wait(t)
        print 'wait_for_event_timeout: e.is_set()->', e.is_set()
    
    if __name__ == '__main__':
        e = multiprocessing.Event()
        w1 = multiprocessing.Process(name='block', 
                                     target=wait_for_event,
                                     args=(e,))
        w1.start()
    
        w2 = multiprocessing.Process(name='nonblock', 
                                     target=wait_for_event_timeout, 
                                     args=(e, 2))
        w2.start()
    
        print 'main: waiting before calling Event.set()'
        time.sleep(3)
        e.set()
        print 'main: event is set'
    进程间信号传递

    Python多进程,一般的情况是Queue来传递。

    from multiprocessing import Process, Queue
    
    def f(q):
        q.put([42, None, 'hello'])
    
    if __name__ == '__main__':
        q = Queue()
        p = Process(target=f, args=(q,))
        p.start()
        print q.get()    # prints "[42, None, 'hello']"
        p.join()
    Queue
    import Queue
    import threading
    import time
    
    exitFlag = 0
    
    class myThread (threading.Thread):
        def __init__(self, threadID, name, q):
            threading.Thread.__init__(self)
            self.threadID = threadID
            self.name = name
            self.q = q
        def run(self):
            print "Starting " + self.name
            process_data(self.name, self.q)
            print "Exiting " + self.name
    
    def process_data(threadName, q):
        while not exitFlag:
            queueLock.acquire()
            if not workQueue.empty():
                data = q.get()
                queueLock.release()
                print "%s processing %s" % (threadName, data)
            else:
                queueLock.release()
            time.sleep(1)
    
    threadList = ["Thread-1", "Thread-2", "Thread-3"]
    nameList = ["One", "Two", "Three", "Four", "Five"]
    queueLock = threading.Lock()
    workQueue = Queue.Queue(10)
    threads = []
    threadID = 1
    
    # Create new threads
    for tName in threadList:
        thread = myThread(threadID, tName, workQueue)
        thread.start()
        threads.append(thread)
        threadID += 1
    
    # Fill the queue
    queueLock.acquire()
    for word in nameList:
        workQueue.put(word)
    queueLock.release()
    
    # Wait for queue to empty
    while not workQueue.empty():
        pass
    
    # Notify threads it's time to exit
    exitFlag = 1
    
    # Wait for all threads to complete
    for t in threads:
        t.join()
    print "Exiting Main Thread"
    多线程优先队列Queue

    多进程使用Queue通信的例子

    import time
    from multiprocessing import Process,Queue
    
    MSG_QUEUE = Queue(5)
    
    def startA(msgQueue):
        while True:
            if msgQueue.empty() > 0:
                print ('queue is empty %d' % (msgQueue.qsize()))
            else:
                msg = msgQueue.get()
                print( 'get msg %s' % (msg,))
            time.sleep(1)
    
    def startB(msgQueue):
        while True:
            msgQueue.put('hello world')
            print( 'put hello world queue size is %d' % (msgQueue.qsize(),))
            time.sleep(3)
    
    if __name__ == '__main__':
        processA = Process(target=startA,args=(MSG_QUEUE,))
        processB = Process(target=startB,args=(MSG_QUEUE,))
    
        processA.start()
        print( 'processA start..')
    View Code

    主进程定义了一个Queue类型的变量,并作为Process的args参数传给子进程processA和processB,两个进程一个向队列中写数据,一个读数据。

  • 相关阅读:
    2019牛客暑期多校训练营(第二场)H Second Large Rectangle
    HDU -1506 Largest Rectangle in a Histogram&&51nod 1158 全是1的最大子矩阵 (单调栈)
    吉哥系列故事——完美队形II(马拉车算法)
    Theme Section
    激光雷达和毫米波雷达
    模型压缩95%:Lite Transformer,MIT韩松等人
    分布式深度学习DDL解析
    TOF摄像机可以替代Flash激光雷达吗?
    毫米波雷达分类和技术方案
    高精地图与自动驾驶(下)
  • 原文地址:https://www.cnblogs.com/IPYQ/p/5573628.html
Copyright © 2020-2023  润新知