• R语言之逻辑回归


    本文主要将逻辑回归的实现,模型的检验等

    参考博文http://blog.csdn.net/tiaaaaa/article/details/58116346;http://blog.csdn.net/ai_vivi/article/details/43836641

    1.测试集和训练集(3:7比例)数据来源:http://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval)

    austra=read.table("australian.dat")
    head(austra) #预览前6行
    
    N=length(austra$V15) #690行,15列
    #ind=1,ind=2分别以0.7,0.3的概率出现
    ind=sample(2,N,replace=TRUE,prob=c(0.7,0.3))
    
    aus_train=austra[ind==1,]
    aus_test=austra[ind==2,]
    

      

    2. 逻辑回归的实现及预测

    pre=glm(V15~.,data=aus_train,family=binomial(link="logit"))
    summary(pre)
    
    real=aus_test$V15
    predict_=predict.glm(pre,type="response",newdata=aus_test)
    predict=ifelse(predict_>0.5,1,0)
    aus_test$predict=predict
    head(aus_test)
    #write.csv(aus_test,"aus_test.csv")
    

      

    3.模型检验

    res=data.frame(real,predict)
    n=nrow(aus_train)
    #计算Cox-Snell拟合优度 R2=1-exp((pre$deviance-pre$null.deviance)/n) cat("Cox-Snell R2=",R2," ") #Cox-Snell R2= 0.5502854
    #计算Nagelkerke拟合优度 R2=R2/(1-exp((-pre$null.deviance)/n)) cat("Nagelkerke R2=",R2," ") #Nagelkerke R2= 0.7379711 #模型其他指标 #residuals(pre) #残差 #coefficients(pre) #系数 #anova(pre) #方差

      

    4.准确率和精度

    true_value=aus_test[,15]
    predict_value=aus_test[,16]
    #计算模型精度
    error=predict_value-true_value
    #判断正确的数量占总数的比例  
    accuracy=(nrow(aus_test)-sum(abs(error)))/nrow(aus_test)
    
    #混淆矩阵中的量(混淆矩阵具体解释见下页)
    #真实值预测值全为1 / 预测值全为1 --- 提取出的正确信息条数/提取出的信息条数  
    precision=sum(true_value & predict_value)/sum(predict_value)
    #真实值预测值全为1 / 真实值全为1 --- 提取出的正确信息条数 /样本中的信息条数  
    recall=sum(predict_value & true_value)/sum(true_value)
    
    #P和R指标有时候会出现的矛盾的情况,这样就需要综合考虑他们,最常见的方法就是F-Measure(又称为F-Score)
    F_measure=2*precision*recall/(precision+recall)    #F-Measure是Precision和Recall加权调和平均,是一个综合评价指标  
    
    #输出以上各结果  
    print(accuracy)  
    print(precision)  
    print(recall)  
    print(F_measure)  
    #混淆矩阵,显示结果依次为TP、FN、FP、TN  
    table(true_value,predict_value) 
    

      

    5. ROC曲线

    #ROC曲线 (ROC曲线详细解释见下页) 
    # 方法1  
    #install.packages("ROCR")    
    library(ROCR)       
    pred <- prediction(predict_,true_value)   #预测值(0.5二分类之前的预测值)和真实值     
    performance(pred,'auc')@y.values        #AUC值  0.9191563
    perf <- performance(pred,'tpr','fpr')  #y轴为tpr(true positive rate),x轴为fpr(false positive rate)
    plot(perf)  
    #方法2  
    #install.packages("pROC")  
    library(pROC)  
    modelroc <- roc(true_value,predict.)  
    plot(modelroc, print.auc=TRUE, auc.polygon=TRUE,legacy.axes=TRUE, grid=c(0.1, 0.2),  
         grid.col=c("green", "red"), max.auc.polygon=TRUE,  
         auc.polygon.col="skyblue", print.thres=TRUE)        #画出ROC曲线,标出坐标,并标出AUC的值  
    #方法3,按ROC定义  
    TPR=rep(0,1000)  
    FPR=rep(0,1000)  
    p=predict.  
    for(i in 1:1000)  
      {   
      p0=i/1000;  
      ypred<-1*(p>p0)    
      TPR[i]=sum(ypred*true_value)/sum(true_value)    
      FPR[i]=sum(ypred*(1-true_value))/sum(1-true_value)  
      }  
    plot(FPR,TPR,type="l",col=2)  
    points(c(0,1),c(0,1),type="l",lty=2)  
    

      

    6. 更换测试集和训练集的选取方式,采用十折交叉验证

    australian <- read.table("australian.dat")  
    #将australian数据分成随机十等分  
    #install.packages("caret")  
    #固定folds函数的分组  
    set.seed(7)  
    library(caret)  
    folds <- createFolds(y=australian$V15,k=10)  
      
    #构建for循环,得10次交叉验证的测试集精确度、训练集精确度  
      
    max=0  
    num=0  
      
    for(i in 1:10){  
        
      fold_test <- australian[folds[[i]],]   #取folds[[i]]作为测试集  
      fold_train <- australian[-folds[[i]],]   # 剩下的数据作为训练集  
        
      print("***组号***")  
        
      fold_pre <- glm(V15 ~.,family=binomial(link='logit'),data=fold_train)  
      fold_predict <- predict(fold_pre,type='response',newdata=fold_test)  
      fold_predict =ifelse(fold_predict>0.5,1,0)  
      fold_test$predict = fold_predict  
      fold_error = fold_test[,16]-fold_test[,15]  
      fold_accuracy = (nrow(fold_test)-sum(abs(fold_error)))/nrow(fold_test)   
      print(i)  
      print("***测试集精确度***")  
      print(fold_accuracy)  
      print("***训练集精确度***")  
      fold_predict2 <- predict(fold_pre,type='response',newdata=fold_train)  
      fold_predict2 =ifelse(fold_predict2>0.5,1,0)  
      fold_train$predict = fold_predict2  
      fold_error2 = fold_train[,16]-fold_train[,15]  
      fold_accuracy2 = (nrow(fold_train)-sum(abs(fold_error2)))/nrow(fold_train)   
      print(fold_accuracy2)  
        
        
      if(fold_accuracy>max)  
        {  
        max=fold_accuracy    
        num=i  
        }  
        
    }  
      
    print(max)  
    print(num)  
      
    ##结果可以看到,精确度accuracy最大的一次为max,取folds[[num]]作为测试集,其余作为训练集。 
    

      

    7.十折交叉验证的准确度

    #十折里测试集最大精确度的结果  
    testi <- australian[folds[[num]],]  
    traini <- australian[-folds[[num]],]   # 剩下的folds作为训练集  
    prei <- glm(V15 ~.,family=binomial(link='logit'),data=traini)  
    predicti <- predict.glm(prei,type='response',newdata=testi)  
    predicti =ifelse(predicti>0.5,1,0)  
    testi$predict = predicti  
    #write.csv(testi,"ausfold_test.csv")  
    errori = testi[,16]-testi[,15]  
    accuracyi = (nrow(testi)-sum(abs(errori)))/nrow(testi)   
      
    #十折里训练集的精确度  
    predicti2 <- predict.glm(prei,type='response',newdata=traini)  
    predicti2 =ifelse(predicti2>0.5,1,0)  
    traini$predict = predicti2  
    errori2 = traini[,16]-traini[,15]  
    accuracyi2 = (nrow(traini)-sum(abs(errori2)))/nrow(traini)   
      
    #测试集精确度、取第i组、训练集精确  
    accuracyi;num;accuracyi2  
    #write.csv(traini,"ausfold_train.csv")  
    

      

    混淆矩阵

        预测    
        1 0  
    1 True Positive(TP) True Negative(TN) Actual Positive(TP+TN)
    0 False Positive(FP) False Negative(FN) Actual Negative(FP+FN)
        Predicted Positive(TP+FP) Predicted Negative(TN+FN)      (TP+TN+FP+FN)

    AccuracyRate(准确率): (TP+TN)/(TP+TN+FN+FP)

    ErrorRate(误分率): (FN+FP)/(TP+TN+FN+FP)

    Recall(召回率,查全率,击中概率): TP/(TP+FN), 在所有GroundTruth为正样本中有多少被识别为正样本了;

    Precision(查准率):TP/(TP+FP),在所有识别成正样本中有多少是真正的正样本;

    TPR(True Positive Rate): TP/(TP+FN),实际就是Recall

    FAR(False Acceptance Rate)或FPR(False Positive Rate):FP/(FP+TN), 错误接收率,误报率,在所有GroundTruth为负样本中有多少被识别为正样本了;

    FRR(False Rejection Rate): FN/(TP+FN),错误拒绝率,拒真率,在所有GroundTruth为正样本中有多少被识别为负样本了,它等于1-Recall

    ROC曲线(receiver operating characteristic curve)

    1. 横轴是FPR,纵轴是TPR;

    2. 每个阈值的识别结果对应一个点(FPR,TPR),当阈值最大时,所有样本都被识别成负样本,对应于左下角的点(0,0),当阈值最小时,所有样本都被识别成正样本,对应于右上角的点(1,1),随着阈值从最大变化到最小,TP和FP都逐渐增大;

    3. 一个好的分类模型应尽可能位于图像的左上角,而一个随机猜测模型应位于连接点(TPR=0,FPR=0)和(TPR=1,FPR=1)的主对角线上;

    4. 可以使用ROC曲线下方的面积AUC(AreaUnder roc Curve)值来度量算法好坏:如果模型是完美的,那么它的AUG = 1,如果模型是个简单的随机猜测模型,那么它的AUG = 0.5,如果一个模型好于另一个,则它的曲线下方面积相对较大;

    5. ERR(Equal Error Rate,相等错误率):FAR和FRR是同一个算法系统的两个参数,把它放在同一个坐标中。FAR是随阈值增大而减小的,FRR是随阈值增大而增大的。因此它们一定有交点。这个点是在某个阈值下的FAR与FRR等值的点。习惯上用这一点的值来衡量算法的综合性能。对于一个更优的指纹算法,希望在相同阈值情况下,FAR和FRR都越小越好。

  • 相关阅读:
    ios中,在SearchBar里面搜索内容,可根据内容来查找所需的信息资源,可获得SearchBar中的内容
    TableViewCell,TableView,UITableViewCell
    iOS-多线程 ,整理集锦,多种线程的创建
    从服务器获取的 数值,进行值传递,不同的文件夹之间的调用。
    Principle 安装步骤
    Principle: 做动效,选对软件很重要 --- 转载自简书
    ios 给图片添加水印
    symbol(s) not found for architecture x86_64 之 linker command failed with exit code 1 (use -v to see invocation)解决方案排查
    IOS 本地通知推送消息
    【ios 7】 之后的设置系统的状态栏隐藏的方法分享
  • 原文地址:https://www.cnblogs.com/Hyacinth-Yuan/p/7905855.html
Copyright © 2020-2023  润新知