For the given integer n (n>2) let’s write down all the strings of length n which contain n−2 letters ‘a’ and two letters ‘b’ in lexicographical (alphabetical) order.
Recall that the string s of length n is lexicographically less than string t of length n, if there exists such i (1≤i≤n), that si<ti, and for any j (1≤j<i) sj=tj. The lexicographic comparison of strings is implemented by the operator < in modern programming languages.
For example, if n=5 the strings are (the order does matter):
aaabb
aabab
aabba
abaab
ababa
abbaa
baaab
baaba
babaa
bbaaa
It is easy to show that such a list of strings will contain exactly n⋅(n−1)2 strings.
You are given n (n>2) and k (1≤k≤n⋅(n−1)2). Print the k-th string from the list.
Input
The input contains one or more test cases.
The first line contains one integer t (1≤t≤1e4) — the number of test cases in the test. Then t test cases follow.
Each test case is written on the the separate line containing two integers n and k (3≤n≤1e5,1≤k≤min(2⋅1e9,n⋅(n−1)2).
The sum of values n over all test cases in the test doesn’t exceed 105.
Output
For each test case print the k-th string from the list of all described above strings of length n. Strings in the list are sorted lexicographically (alphabetically).
Example Input
7
5 1
5 2
5 8
5 10
3 1
3 2
20 100
Output
aaabb
aabab
baaba
bbaaa
abb
bab
aaaaabaaaaabaaaaaaaa
题目大意:
输入一个t表示有t组测试样例,对于每组测试样例,给出n和k,表示有n长度的ab串,由n-2个a和2个b组成,k表示输出第k个字典序(可以看一下题面的样例)。
解题思路:
这道题n的范围是1e5,我刚开始用的next_permutation()函数,TLE了一发,发现这个是一道思维题,我们可以根据n和k的值推算出 b 的位置,然后把对应的位置替换成b即可。我们可以根据给出的样例得到规律,第一个b在倒数第二个位置的有1个,倒数第三个b位置的有3个,倒数第四个b有4个,我们可以得到第一个b的位置数列是 1 3 6 10… 这样,推一个公式:n(n-1)/2,n=2时倒数第二个b截止到第1个,n=3时倒数第三个b截止到第3个,就能得到 n的数即是倒数第n个b的截止数。这样枚举到1e5就能确定第一个b的位置了。再看k:k也有公式,n-(n(n-1)/2-k)-1,不过要先根据前面的公式推出n所处的区间,比如n如果等于2,则说明第一个b应该在倒数第二个位置,之后把n=2带进去,就等得到第二个b的位置。ps:求出来的值是表示倒数第几个位置。AC代码:
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
const int _max=1e5+50;
using ll = long long;
int main()
{
int t;
cin>>t;
while(t--)
{
ll n,k;
cin>>n>>k;
ll p,q;
for(ll i=1;i<_max;i++)
if(k<=(i*(i-1)/2))
{
p=i;//第一个b
break;
}
q=p-(p*(p-1)/2-k)-1;//第二个b
//cout<<p<<" "<<q<<endl;
string s(n,'a');
s[n-p]=s[n-q]='b';
cout<<s<<endl;
}
//system("pause");
return 0;
}