• Codeforces Gym 100338C Important Roads 最短路+Tarjan找桥


    原题链接:http://codeforces.com/gym/100338/attachments/download/2136/20062007-winter-petrozavodsk-camp-andrew-stankevich-contest-22-asc-22-en.pdf

    题意

    给你一个无向图,要从1走到n,问你哪些边去掉之后就没法走原本的最短路了。

    题解

    跑两发最短路,顺着跑一发,倒着跑一发,对于边(u,v),如果w(u,v)+d[u]+rd[v]或者w(u,v)+d[v]+rd[u]等于最短路,那么边(u,v)就是某条最短路上的边,将这些边标记好后,跑一发Tarjan找桥,这些桥就是答案。需要注意的是有重边。

    代码

    #include<iostream>
    #include<queue>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    #include<cstdio>
    #include<set>
    #define INF 21234567890
    #define MAX_N 20004
    #define MAX_M 112345
    using namespace std;
    
    typedef long long ll;
    
    struct node {
    public:
        int u;
        ll c;
    
        node(int uu, ll cc) : u(uu), c(cc) { }
    
        node() { }
    
        bool operator<(const node &a)const {
            return c > a.c;
        }
    };
    
    struct edge {
    public:
        int to;
        ll cost;
        bool isShort;
        int id;
        edge(int t, ll c,int i) : to(t), cost(c), isShort(0), id(i){ }
    
        edge() { }
    };
    priority_queue<node> que;
    int n, m;
    
    struct fuck {
    public:
        int u, v, c, id;
    
        fuck(int uu, int vv, int cc, int i) : u(uu), v(vv), c(cc), id(i) { }
    
        fuck() { }
        bool operator<(const fuck &a)const{
            if(a.u==u){
                if(a.v==v)return a.c<c;
                else return a.v<v;
            }
            return a.u<u;
        }
    };
    
    set<fuck> se;
    
    vector<edge> G[MAX_N];
    
    void dijkstra(int s,ll d[]) {
        while (que.size())que.pop();
        fill(d, d + n + 1, INF);
        que.push(node(s, 0));
        d[s] = 0;
        while (que.size()) {
            node now = que.top();
            que.pop();
            int u = now.u;
            ll c = now.c;
            if (d[u] < c)continue;
            for (int i = 0; i < G[u].size(); i++) {
                int v = G[u][i].to;
                if (d[v] > d[u] + G[u][i].cost) {
                    d[v] = d[u] + G[u][i].cost;
                    que.push(node(v, d[v]));
                }
            }
        }
    }
    
    ll d[MAX_N],rd[MAX_N];
    
    int father[MAX_N];
    int dfn[MAX_N],low[MAX_N],ind=0;
    bool vis[MAX_N];
    int sum=0;
    bool isBridge[MAX_M];
    
    bool hasSame[MAX_M];
    
    void Tarjan(int u,int p) {
        father[u] = p;
        dfn[u] = low[u] = ++ind;
        vis[u] = 1;
        for (int i = 0; i < G[u].size(); i++) {
            int v = G[u][i].to;
            if (v == p||(!G[u][i].isShort))continue;
            if (!vis[v]) {
                Tarjan(v,u);
                low[u] = min(low[u], low[v]);
                if (low[v] > dfn[u]) {
                    sum++;
                    isBridge[G[u][i].id] = 1;
                }
            }
            else
                low[u] = min(dfn[v], low[u]);
        }
    }
    
    bool ans[MAX_M];
    
    int main() {
        freopen("important.in", "r", stdin);
        freopen("important.out", "w", stdout);
        scanf("%d%d", &n, &m);
        for (int i = 0; i < m; i++) {
            int u, v;
            int c;
            scanf("%d%d%d", &u, &v, &c);
            fuck f(u,v,c,i);
            fuck f0(v,u,c,i);
            auto it=se.find(f);
            if(it!=se.end()){
                hasSame[it->id]=1;
                continue;
            }
            it=se.find(f0);
            if(it!=se.end()){
                hasSame[it->id]=1;
                continue;
            }
            se.insert(f);
            G[u].push_back(edge(v, c, i));
            G[v].push_back(edge(u, c, i));
        }
    
        dijkstra(1, d);
        dijkstra(n, rd);
        ll sd = d[n];
        for (int i = 1; i <= n; i++)
            for (int j = 0; j < G[i].size(); j++) {
                int u = i, v = G[i][j].to;
                if (d[u] + rd[v] + G[i][j].cost == sd || d[v] + rd[u] + G[i][j].cost == sd)
                    G[i][j].isShort = 1;
            }
        Tarjan(1,0);
        int tot = 0;
        for (int i = 1; i <= n; i++)
            for (int j = 0; j < G[i].size(); j++)
                if (isBridge[G[i][j].id])
                    ans[G[i][j].id + 1] = 1;
        for (int i = 1; i <= m; i++)if ((!hasSame[i-1])&&ans[i])tot++;
        printf("%d
    ", tot);
        for (int i = 1; i <= m; i++)
            if (ans[i]&&(!hasSame[i-1]))
                printf("%d ", i);
        printf("
    ");
        return 0;
    }
  • 相关阅读:
    观察者模式
    模版方法
    event
    设计模式之观察者模式
    BOM
    javascript基础语法&4
    Document Object Model
    javascript基础语法&3
    javaScript基础语法&1
    sublimeText3安装
  • 原文地址:https://www.cnblogs.com/HarryGuo2012/p/4748847.html
Copyright © 2020-2023  润新知