• POJ 3233


    原题链接

    描述

    Given a n × n matrix A and a positive integer k, find the sum (S = A + A^{2} + A^{3} + … + A^{k}.)

    输入

    The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 10e9) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32768, giving A’s elements in row-major order.

    输出

    Output the elements of S modulo m in the same way as A is given.

    样例输入

    2 2 4
    0 1
    1 1

    样例输出

    1 2
    2 3

    思路

    起初我直接矩阵快速幂,然后把结果相加,可是TLE了,然后去百度看看别人的思路,找到一个神奇的公式。

    [ B = left[ egin{matrix} A & E \ 0 & E end{matrix} ight] ]

    [ B^{k+1} = left[ egin{matrix} A^{k+1} & E + A + A^{2} + A^{3} + … + A^{k} \ 0 & E end{matrix} ight] ]

    有了这个公式之后,写了个分块矩阵就好,顺便重构了一下我那惨不忍睹的矩阵快速幂模版。
    虽然被大佬嫌弃代码啰嗦,但还是放上来吧。

    代码

    #include <cstdio>
    #include<cstring>
    #define ll long long
    #define maxn 32
    using namespace std;
    
    int n, k, mod;
    
    struct Mat
    {
    	ll f[maxn][maxn];
    	void cls(){memset(f, 0, sizeof(f));}//全部置为0 
    	Mat() {cls();}
    	void myprint(int n)//输出n阶顺序主子式 
    	{
    		for(int i = 0; i < n; i++)
    		{
    			for(int j = 0; j < n; j++)
    				printf("%d ", f[i][j] % mod);
    			printf("
    ");
    		}
    	}
    	friend Mat operator + (Mat a, Mat b)
    	{
    		Mat res;
    		for(int i = 0; i < maxn; i++)
    			for(int j = 0; j < maxn; j++)
    				res.f[i][j] = a.f[i][j] + b.f[i][j];
    		return res;
    	}
    	friend Mat operator - (Mat a, Mat b)
    	{
    		Mat res;
    		for(int i = 0; i < maxn; i++)
    			for(int j = 0; j < maxn; j++)
    			{
    				res.f[i][j] = a.f[i][j] - b.f[i][j];
    				while(res.f[i][j] < 0) res.f[i][j] += mod;
    			}
    		return res;
    	}
    	friend Mat operator * (Mat a, Mat b)
    	{
    		Mat res;
    		for(int i = 0; i < maxn; i++)for(int j = 0; j < maxn; j++)
    			for(int k = 0; k < maxn; k++)
    				(res.f[i][j] += a.f[i][k] * b.f[k][j]) %= mod;
    		return res;
    	}
    } E, I;
    
    struct MatDiv
    {
    	Mat s[2][2];
    	void set(Mat x1, Mat x2, Mat x3, Mat x4)
    	{
    		s[0][0] = x1; s[0][1] = x2;
    		s[1][0] = x3; s[1][1] = x4;
    	}
    	friend MatDiv operator * (MatDiv a, MatDiv b)
    	{
    		MatDiv res;
    		for(int i = 0; i < 2; i++) for(int j = 0; j < 2;j++)
    			for(int k = 0; k < 2; k++)
    				res.s[i][j] = a.s[i][k] * b.s[k][j] + res.s[i][j];
    		return res;
    	}
    }; 
    
    MatDiv quick_pow(MatDiv a)  
    {  
        MatDiv ans;
        ans.set(E, I, E, I);
        ll b = k;
        while(b != 0)  
        {
            if(b & 1) ans = ans * a;
            b >>= 1;
            a = a * a;
        }
        return ans;  
    }
    
    int main()
    {
    	for(int i = 0; i < maxn; i++)
    		E.f[i][i] = 1;
    	while(~scanf("%d %d %d", &n, &k, &mod))
    	{
    		Mat A; k++;
    		for(int i = 0; i < n; i++)
    			for(int j = 0; j < n; j++)
    				scanf("%d", &A.f[i][j]);
    		MatDiv B; B.set(A, E, I, E);
    		B = quick_pow(B);
    		A = B.s[0][1] - E;
    		A.myprint(n);
    	}
    	return 0;
    }
    
  • 相关阅读:
    人脸识别常用的性能评价指标
    【计算机视觉】seetaFace
    【error】'isnan' was not declared in this scope
    【opencv基础】图像的几何变换
    [c++]base64编解码 and image
    【leetcode】232-Implement Queue using Stacks
    【leetcode】231-power-of-two
    C++中vector容器的常用操作方法实例总结
    【leetcode】226-invert-binary-tree
    第3章 文件I/O(2)_文件I/O系统调用及文件描述符
  • 原文地址:https://www.cnblogs.com/HackHarry/p/8391677.html
Copyright © 2020-2023  润新知