• 【特征提取】MultiBlock-LBP特征


    MB-LBP特征,注意区分是Multi-block LBP还是MultiScale Block LBP,区别是是否使用了多尺度方法。其中Multiscale Block LBP,来源于论文,中科院的人发明的,opencv源码在Traincascade级联目标训练检测中的LBP特征使用的就是MultiScale Block LBP。 

     generateFeatures

    void CvLBPEvaluator::generateFeatures()
    {
        int offset = winSize.width + 1;
        for( int x = 0; x < winSize.width; x++ )
            for( int y = 0; y < winSize.height; y++ )
                for( int w = 1; w <= winSize.width / 3; w++ )
                    for( int h = 1; h <= winSize.height / 3; h++ )
                        if ( (x+3*w <= winSize.width) && (y+3*h <= winSize.height) )
                            features.push_back( Feature(offset, x, y, w, h ) );
        numFeatures = (int)features.size();
    }

    Feature

    CvLBPEvaluator::Feature::Feature( int offset, int x, int y, int _blockWidth, int _blockHeight )
    {
        Rect tr = rect = cvRect(x, y, _blockWidth, _blockHeight);
        CV_SUM_OFFSETS( p[0], p[1], p[4], p[5], tr, offset )
        tr.x += 2*rect.width;
        CV_SUM_OFFSETS( p[2], p[3], p[6], p[7], tr, offset )
        tr.y +=2*rect.height;
        CV_SUM_OFFSETS( p[10], p[11], p[14], p[15], tr, offset )
        tr.x -= 2*rect.width;
        CV_SUM_OFFSETS( p[8], p[9], p[12], p[13], tr, offset )
    }
    View Code

    calc

    inline uchar CvLBPEvaluator::Feature::calc(const cv::Mat &_sum, size_t y) const
    {
        const int* psum = _sum.ptr<int>((int)y);
        int cval = psum[p[5]] - psum[p[6]] - psum[p[9]] + psum[p[10]];
    
        return (uchar)((psum[p[0]] - psum[p[1]] - psum[p[4]] + psum[p[5]] >= cval ? 128 : 0) |   // 0
            (psum[p[1]] - psum[p[2]] - psum[p[5]] + psum[p[6]] >= cval ? 64 : 0) |    // 1
            (psum[p[2]] - psum[p[3]] - psum[p[6]] + psum[p[7]] >= cval ? 32 : 0) |    // 2
            (psum[p[6]] - psum[p[7]] - psum[p[10]] + psum[p[11]] >= cval ? 16 : 0) |  // 5
            (psum[p[10]] - psum[p[11]] - psum[p[14]] + psum[p[15]] >= cval ? 8 : 0) | // 8
            (psum[p[9]] - psum[p[10]] - psum[p[13]] + psum[p[14]] >= cval ? 4 : 0) |  // 7
            (psum[p[8]] - psum[p[9]] - psum[p[12]] + psum[p[13]] >= cval ? 2 : 0) |   // 6
            (psum[p[4]] - psum[p[5]] - psum[p[8]] + psum[p[9]] >= cval ? 1 : 0));     // 3
    }
    View Code

    CV_SUM_OFFSETS

    #define CV_SUM_OFFSETS( p0, p1, p2, p3, rect, step )                      
        /* (x, y) */                                                          
        (p0) = (rect).x + (step) * (rect).y;                                  
        /* (x + w, y) */                                                      
        (p1) = (rect).x + (rect).width + (step) * (rect).y;                   
        /* (x, y + h) */                                    
        (p2) = (rect).x + (step) * ((rect).y + (rect).height);                
        /* (x + w, y + h) */                                                  
        (p3) = (rect).x + (rect).width + (step) * ((rect).y + (rect).height);

    参考

    1. LBP特征原理及代码实现

    2. opencv源码解析之LBP特征

    3. 机器学习之LBP特征

    4. matalb code之MB-LBP特征

    5. Face Detection Based on Multi-Block LBP Representation;

    6. Learning Multi-scale Block Local Binary Patterns for Face Recognition;

  • 相关阅读:
    第009讲:了不起的分支和循环3
    Term_Application
    十大编程算法助程序员走上高手之路
    每天工作4小时的程序员
    编程真相_节选
    Sublime_Snippet
    VIM资源管理
    微信企业号开发资源整理
    vitruviano
    VIM_git
  • 原文地址:https://www.cnblogs.com/happyamyhope/p/10332856.html
Copyright © 2020-2023  润新知