一个暴力的做法是把边看成点,之间的边权为两边的较大权值,最短路即可。但这样显然会被菊花图之类的卡掉。
考虑优化建图。将边拆成两个有向边,同样化边为点。原图中同一条边在新图中的两个点之间连边权为原边权的边。对于原图同一点的出边按权值从小到大排序,权值相邻的由小到大连边权为差值的边,由大到小连边权为0的边。这样就完成了取max的操作。加上超源超汇即可。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> #include<queue> using namespace std; int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } #define N 100010 #define M 200010 int n,m,p[M<<1],t=0; long long d[M<<1]; bool flag[M<<1]; struct data{int to,nxt,len; }edge[M<<3]; struct data3{int x,y,z,i; }e[M<<1]; struct data2 { int x;long long d; bool operator <(const data2&a) const { return d>a.d; } }; priority_queue<data2> q; void addedge(int x,int y,int z){t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].len=z,p[x]=t;} void dijkstra() { while (!q.empty()) q.pop(); memset(d,42,sizeof(d));d[0]=0;q.push((data2){0,0}); memset(flag,0,sizeof(flag)); for (int i=1;i<=m*2+1;i++) { while (!q.empty()&&flag[q.top().x]) q.pop(); if (q.empty()) break; data2 v=q.top();q.pop(); flag[v.x]=1; for (int j=p[v.x];j;j=edge[j].nxt) if (v.d+edge[j].len<d[edge[j].to]) { d[edge[j].to]=v.d+edge[j].len; q.push((data2){edge[j].to,d[edge[j].to]}); } } } bool cmp1(const data3&a,const data3&b) { return a.x<b.x; } bool cmp2(const data3&a,const data3&b) { return a.z<b.z; } int main() { #ifndef ONLINE_JUDGE freopen("bzoj4289.in","r",stdin); freopen("bzoj4289.out","w",stdout); const char LL[]="%I64d "; #else const char LL[]="%lld "; #endif n=read(),m=read(); for (int i=1;i<=m;i++) e[i].x=e[i+m].y=read(),e[i].y=e[i+m].x=read(),e[i].z=e[i+m].z=read(),e[i].i=i,e[i+m].i=i+m,addedge(i,i+m,e[i].z),addedge(i+m,i,e[i].z); sort(e+1,e+m*2+1,cmp1); for (int i=1;i<=m*2;i++) { int t=i; while (t<m*2&&e[t+1].x==e[i].x) t++; sort(e+i,e+t+1,cmp2); for (int j=i;j<t;j++) addedge(e[j].i,e[j+1].i,e[j+1].z-e[j].z); for (int j=t;j>i;j--) addedge(e[j].i,e[j-1].i,0); i=t; } for (int i=1;i<=m*2;i++) { if (e[i].x==1) addedge(0,e[i].i,e[i].z); if (e[i].y==n) addedge(e[i].i,m*2+1,e[i].z); } dijkstra(); cout<<d[m*2+1]; return 0; }