AB:div 3 AB???
C:div 1 C???场内自闭的直接去看D。事实上是个傻逼题,注意到物品相对顺序不变,二分边界即可。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define N 200010 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,m,a[N],tot; char s[N],b[N]; bool check(int k,int op) { for (int i=1;i<=m;i++) if (b[i]==s[k]) { if (a[i]==0) k--; else k++; if (k==0) { if (op==0) return 1; else return 0; } if (k==n+1) { if (op==1) return 1; else return 0; } } return 0; } signed main() { tot=n=read(),m=read(); scanf("%s",s+1); for (int i=1;i<=m;i++) { b[i]=getc();a[i]=getc()=='R'; } int l=1,r=n,ans=0; while (l<=r) { int mid=l+r>>1; if (check(mid,0)) ans=mid,l=mid+1; else r=mid-1; } tot-=ans; l=1,r=n;ans=n+1; while (l<=r) { int mid=l+r>>1; if (check(mid,1)) ans=mid,r=mid-1; else l=mid+1; } tot-=n+1-ans; cout<<tot; return 0; //NOTICE LONG LONG!!!!! }
D:显然对小模数取模后,大模数不会再产生影响。于是将模数从大到小排序,设f[i][j]为考虑了前i大模数后当前值是j的概率,转移考虑第i个模数是否在前缀单调栈中,若在则转移对其取模,在栈中相当于其要在比它小的所有数的前面,概率显然为1/(n-i+1)。场上莫名其妙的认为这个概率是1/(n-i+1)!,然后就自闭了。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define N 210 #define M 100010 #define P 1000000007 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,m,a[N],f[N][M],fac[N],inv[N]; signed main() { freopen("d.in","r",stdin); freopen("d.out","w",stdout); n=read(),m=read(); for (int i=1;i<=n;i++) a[i]=read(); sort(a+1,a+n+1);reverse(a+1,a+n+1); fac[0]=1;for (int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%P; inv[0]=inv[1]=1;for (int i=2;i<=n;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P; f[0][m]=1; for (int i=1;i<=n;i++) { for (int j=0;j<=m;j++) { f[i][j]=(f[i][j]+1ll*f[i-1][j]*(P+1-inv[n-i+1]))%P; f[i][j%a[i]]=(f[i][j%a[i]]+1ll*f[i-1][j]*inv[n-i+1])%P; } } int ans=0; for (int j=0;j<=m;j++) ans=(ans+1ll*f[n][j]*fac[n]%P*(j%a[n]))%P; cout<<ans; return 0; //NOTICE LONG LONG!!!!! }
E:最后5分钟才看这个题,然后发现是个一眼题。考虑黑白球哪个先被拿完,不妨设是白球,然后见注释。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define P 1000000007 #define N 200010 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,m,f[N],fac[N],inv[N]; int ksm(int a,int k) { int s=1; for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P; return s; } int Inv(int a){return ksm(a,P-2);} int C(int n,int m){if (m>n) return 0;return 1ll*fac[n]*inv[m]%P*inv[n-m]%P;} signed main() { freopen("e.in","r",stdin); freopen("e.out","w",stdout); n=read(),m=read(); fac[0]=fac[1]=1;for (int i=1;i<=n+m;i++) fac[i]=1ll*fac[i-1]*i%P; inv[0]=inv[1]=1;for (int i=2;i<=n+m;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P; for (int i=2;i<=n+m;i++) inv[i]=1ll*inv[i-1]*inv[i]%P; for (int i=m;i<n+m;i++) { int p=1ll*C(i-1,m-1)*Inv(ksm(2,i))%P; f[1]=(f[1]+1ll*(i-m)*Inv(i-1)%P*p)%P; f[i]=(f[i]+P-1ll*(i-m)*Inv(i-1)%P*p%P)%P; f[i+1]=(f[i+1]+p)%P; } for (int i=n;i<n+m;i++) { int p=1ll*C(i-1,n-1)*Inv(ksm(2,i))%P; f[1]=(f[1]+1ll*(n-1)*Inv(i-1)%P*p)%P; f[i]=(f[i]+P-1ll*(n-1)*Inv(i-1)%P*p%P)%P; f[i]=(f[i]+p)%P; f[i+1]=(f[i+1]+P-p)%P; } //白球是在第i次被拿完的 之前黑白球都存在 则每次拿黑白球概率均等 其概率为C(i-1,m-1)/2^i //考虑该情况下第j次拿黑球的概率 显然第i次不可能 //对j<i和j>i分别考虑 //j<i时,概率为(i-m)/(i-1) //j>i时,概率为1 //若白球是最后一次被拿完的 再考虑黑球是什么时候被拿完的 //类似 for (int i=1;i<=n+m;i++) f[i]=(f[i]+f[i-1])%P; for (int i=1;i<=n+m;i++) printf("%d ",f[i]); return 0; //NOTICE LONG LONG!!!!! }
F:咕