A:考虑每对最大值最小值的贡献即可。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define N 300010 #define P 1000000007 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,a[N],p[N],x,ans; signed main() { #ifndef ONLINE_JUDGE freopen("a.in","r",stdin); freopen("a.out","w",stdout); #endif n=read(); for (int i=1;i<=n;i++) a[i]=read(); sort(a+1,a+n+1); p[0]=1;for (int i=1;i<=n;i++) p[i]=2ll*p[i-1]%P; for (int i=2;i<=n;i++) { ans=(ans+1ll*a[i]*(p[i-1]-1))%P; x=(2ll*x+a[i-1])%P; ans=(ans-x+P)%P; } cout<<ans; return 0; //NOTICE LONG LONG!!!!! }
B:考虑每次都询问x=i y=i+1。这样得到的是最近的被标记点是在左边还是右边。这样二分一下可以确定一个标记点的位置。同样二分找第二个点,由于要使其不和第一个点重复,对第一个点的两边分别考虑,二分过程中需要保证第一个点不对询问造成影响,讨论一下一些边界即可。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define N 100010 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,k; char s[10]; bool ask(int x,int y) { cout<<1<<' '<<x<<' '<<y<<endl; scanf("%s",s); return s[0]=='T'; } bool check(int x) { if (x<=0||x>n) return 0; if (x==1) { return ask(1,2); } if (x==n) { return ask(n,n-1); } if (ask(x,x-1)&&ask(x,x+1)) return 1;else return 0; } signed main() { n=read(),k=read(); int x=0; if (ask(n,n-1)) x=n; else { int l=1,r=n-1; while (l<r) { int mid=l+r>>1; if (ask(mid,mid+1)) { r=mid; } else { l=mid+1; } } x=l; } int l=1,r=x-1; while (l<r) { int mid=l+r>>1; if (ask(mid,mid+1)) r=mid; else l=mid+1; } if (check(l)&&x!=l) cout<<2<<' '<<l<<' '<<x<<endl; else { int l=x+1,r=n; while (l<r) { int mid=l+r>>1; if (ask(mid+1,mid)) l=mid+1; else r=mid; } if (check(x)&&x!=l) cout<<2<<' '<<x<<' '<<l<<endl; else { if (x>1) if (ask(x-1,x)) {cout<<2<<' '<<x-1<<' '<<x<<endl;return 0;} if (x<n) if (ask(x+1,x)) {cout<<2<<' '<<x<<' '<<x+1<<endl;return 0;} } } return 0; //NOTICE LONG LONG!!!!! }
C:打表可以发现,对于2k*2k的矩阵,将其分成左上左下右上右下四部分,其中左上和右下相同,左下和右上相同,且左下是左上+2k-1复制而来。于是直接记搜即可。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> #include<map> using namespace std; #define ll long long #define N 100010 #define P 1000000007 #define mp(x,y) make_pair((x),(y)) char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } typedef pair<int,int> pii; struct data { int x,y,k; bool operator <(const data&a) const { return x<a.x||x==a.x&&y<a.y||x==a.x&&y==a.y&&k<a.k; } bool operator ==(const data&a) const { return x==a.x&&y==a.y&&k==a.k; } }; map<data,pii> f; pii operator +(pii a,pii b) { return mp((a.first+b.first)%P,(a.second+b.second)%P); } pii calc(int x,int y,int k) { if (x==0||y==0||k<=0) return mp(0,0); if (x==1&&y==1) return mp(1,1); k=min(k,x+y-1); if (x>y) swap(x,y); data qwq=(data){x,y,k}; if (f.find(qwq)!=f.end()) return f[qwq]; int u=1; while ((u<<1)<y) u<<=1; pii ans; if (x<=u) { ans=calc(x,u,k); pii tmp=calc(x,y-u,k-u); ans=ans+tmp;ans.first=(ans.first+1ll*tmp.second*u)%P; } else { ans=calc(u,u,k); ans=ans+calc(x-u,y-u,k); pii tmp=calc(x-u,u,k-u); ans=ans+tmp;ans.first=(ans.first+1ll*tmp.second*u)%P; tmp=calc(u,y-u,k-u); ans=ans+tmp;ans.first=(ans.first+1ll*tmp.second*u)%P; } return f[qwq]=ans; } int bruteforce(int x1,int y1,int x2,int y2,int k) { int ans=0; for (int i=x1;i<=x2;i++) for (int j=y1;j<=y2;j++) if ((i-1^j-1)+1<=k) ans=(ans+(i-1^j-1)+1)%P; return ans; } signed main() { int q=read(); while (q--) { int x1=read(),y1=read(),x2=read(),y2=read(),k=read(); int ans=0; ans=(ans+calc(x2,y2,k).first)%P; ans=(ans-calc(x1-1,y2,k).first+P)%P; ans=(ans-calc(x2,y1-1,k).first+P)%P; ans=(ans+calc(x1-1,y1-1,k).first)%P; printf("%d ",ans); //printf("%d ",bruteforce(x1,y1,x2,y2,k)); } return 0; //NOTICE LONG LONG!!!!! }
D:搬上LIS的单调队列做法,设f[j]为前i位长度为j的单增序列的最后一位的最小值。考虑转移,显然f[j]=min(f[j],max(f[j-1]+1,l[i])) (f[j-1]<r[i])。注意到显然有f[j]<f[j+1],所以不考虑l[i]限制的话,上述转移不需要取min,符合条件就可以直接赋值。那么二分找到l[i]和r[i]对应的边界,就相当于将区间平移并+1,然后区间内对l[i]取max。可以用splay维护。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define lson tree[k].ch[0] #define rson tree[k].ch[1] #define N 300010 #define inf 1000000001 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,a[N],b[N],root,cnt; struct data{int ch[2],fa,x,lazymax,lazyadd,s; }tree[N<<1]; void up(int k){tree[k].s=tree[lson].s+tree[rson].s+1;} void access(int k){while (k) up(k),k=tree[k].fa;} int newnode(int v) { int k=++cnt; tree[k].s=1; tree[k].x=v; return k; } void build(int &k,int l,int r) { if (l>r) return; int mid=l+(r-l)/2; if (mid<=0) k=newnode(mid); else k=newnode(inf+mid); build(lson,l,mid-1); build(rson,mid+1,r); tree[lson].fa=tree[rson].fa=k; up(k); } int whichson(int k){return tree[tree[k].fa].ch[1]==k;} void update(int k,int lazymax,int lazyadd) { tree[k].x+=lazyadd; tree[k].x=max(tree[k].x,lazymax); tree[k].lazyadd+=lazyadd; tree[k].lazymax+=lazyadd; tree[k].lazymax=max(tree[k].lazymax,lazymax); } void down(int k) { update(lson,tree[k].lazymax,tree[k].lazyadd); update(rson,tree[k].lazymax,tree[k].lazyadd); tree[k].lazymax=tree[k].lazyadd=0; } void push(int k){if (k!=root) push(tree[k].fa);down(k);} void move(int k) { int fa=tree[k].fa,gf=tree[fa].fa,p=whichson(k); if (fa!=root) tree[gf].ch[whichson(fa)]=k;tree[k].fa=gf; tree[fa].ch[p]=tree[k].ch[!p];tree[tree[k].ch[!p]].fa=fa; tree[k].ch[!p]=fa,tree[fa].fa=k; up(fa),up(k); } void splay(int k,int rt) { push(k); while (tree[k].fa!=rt) { int fa=tree[k].fa; if (tree[fa].fa!=rt) if (whichson(fa)^whichson(k)) move(k); else move(fa); move(k); } if (rt==0) root=k; } int find(int k,int x) { if (tree[lson].s-1==x) return k; if (tree[lson].s-1>x) return find(lson,x); else return find(rson,x-tree[lson].s-1); } int findsuf(int k,int x) { if (k==0) return -2; down(k); if (tree[k].x<=x) return findsuf(rson,x); else { int t=findsuf(lson,x); if (t==-2) return k; else return t; } } int findpre(int k,int x) { if (k==0) return -2; down(k); if (tree[k].x>=x) return findpre(lson,x); else { int t=findpre(rson,x); if (t==-2) return k; else return t; } } int getrank(int k) { splay(k,0); return tree[lson].s-1; } int split(int l,int r) { int p=find(root,l-1),q=find(root,r+1); splay(p,0);splay(q,p); return tree[q].ch[0]; } void del(int x) { int k=split(x,x); tree[tree[k].fa].ch[0]=0; access(tree[k].fa); } void ins(int x,int v) { int k=split(x,x); lson=newnode(v); tree[lson].fa=k; access(lson); } int query(int x) { return tree[split(x,x)].x; } void add(int l,int r) { int k=split(l,r); update(k,0,1); } void getmax(int l,int r,int x) { if (l>r) return; int k=split(l,r); update(k,x,0); } signed main() { #ifndef ONLINE_JUDGE freopen("a.in","r",stdin); freopen("a.out","w",stdout); #endif n=read(); for (int i=1;i<=n;i++) a[i]=read(),b[i]=read(); build(root,-1,n+1); for (int i=1;i<=n;i++) { int l=getrank(findsuf(root,a[i])); int r=getrank(findpre(root,b[i]))+1; if (l>r) continue; del(r);ins(l-1,query(l-1));add(l,r);getmax(l,r,a[i]); } for (int i=n;i>=1;i--) if (query(i)<inf) {cout<<i;break;} return 0; //NOTICE LONG LONG!!!!! }
E:众所周知φ(nm)=φ(n)*φ(m)*gcd(n,m)/φ(gcd(n,m)),于是莫比乌斯反演一下,最后大约要求f(D)=Σdis(u,v)*φ(au)*φ(av) (D|au,av)。考虑点分,可以转化为对每个点u求g(D,u)=2deepu*φ(au)*φ(av) (D|au,av),每个点对所有因子加一下贡献即可。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> #include<vector> using namespace std; #define ll long long #define N 200010 #define P 1000000007 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,a[N],p[N],t; int prime[N],phi[N],mobius[N],inv[N],cnt; int deep[N],size[N],val[N],f[N],ans; bool flag[N]; vector<int> factor[N]; struct data{int to,nxt; }edge[N<<1]; void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;} inline void inc(int &x,int y){x+=y;if (x>=P) x-=P;} void make(int k,int from) { size[k]=1; for (int i=p[k];i;i=edge[i].nxt) if (!flag[edge[i].to]&&edge[i].to!=from) { deep[edge[i].to]=deep[k]+1; make(edge[i].to,k); size[k]+=size[edge[i].to]; } } int findroot(int k,int from,int s) { int mx=0; for (int i=p[k];i;i=edge[i].nxt) if (!flag[edge[i].to]&&edge[i].to!=from&&size[edge[i].to]>size[mx]) mx=edge[i].to; if ((size[mx]<<1)>s) return findroot(mx,k,s); else return k; } void work(int k,int from,int op) { for (int i=0;i<factor[a[k]].size();i++) if (op==1) inc(val[factor[a[k]][i]],phi[a[k]]); else inc(val[factor[a[k]][i]],P-phi[a[k]]); for (int i=p[k];i;i=edge[i].nxt) if (!flag[edge[i].to]&&edge[i].to!=from) work(edge[i].to,k,op); } void update(int k,int from) { for (int i=0;i<factor[a[k]].size();i++) inc(f[factor[a[k]][i]],2ll*deep[k]*phi[a[k]]%P*val[factor[a[k]][i]]%P); for (int i=p[k];i;i=edge[i].nxt) if (!flag[edge[i].to]&&edge[i].to!=from) update(edge[i].to,k); } void solve(int k) { make(k,k); k=findroot(k,k,size[k]); flag[k]=1;deep[k]=0;make(k,k); work(k,k,1); for (int i=p[k];i;i=edge[i].nxt) if (!flag[edge[i].to]) { work(edge[i].to,edge[i].to,-1); update(edge[i].to,edge[i].to); work(edge[i].to,edge[i].to,1); } work(k,k,-1); for (int i=p[k];i;i=edge[i].nxt) if (!flag[edge[i].to]) solve(edge[i].to); } //f(D)=��2deepu*��(au)*��(av) (D|au,D|av) signed main() { #ifndef ONLINE_JUDGE freopen("a.in","r",stdin); freopen("a.out","w",stdout); #endif n=read(); for (int i=1;i<=n;i++) a[i]=read(); for (int i=1;i<n;i++) { int x=read(),y=read(); addedge(x,y),addedge(y,x); } flag[1]=1;mobius[1]=phi[1]=1; for (int i=2;i<=n;i++) { if (!flag[i]) prime[++cnt]=i,mobius[i]=-1,phi[i]=i-1; for (int j=1;j<=cnt&&prime[j]*i<=n;j++) { flag[prime[j]*i]=1; if (i%prime[j]==0) {phi[prime[j]*i]=phi[i]*prime[j];break;} mobius[prime[j]*i]=-mobius[i]; phi[prime[j]*i]=phi[i]*(prime[j]-1); } } inv[1]=1;for (int i=2;i<=n;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P; memset(flag,0,sizeof(flag)); for (int i=1;i<=n;i++) for (int j=i;j<=n;j+=i) factor[j].push_back(i); solve(1); for (int i=1;i<=n;i++) for (int j=i;j<=n;j+=i) ans=(ans+1ll*f[j]*(P+mobius[j/i])%P*i%P*inv[phi[i]])%P; cout<<1ll*ans*inv[n]%P*inv[n-1]%P; return 0; //NOTICE LONG LONG!!!!! }