A:暴力枚举第一列加多少次,显然这样能确定一种方案。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define N 110 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,m,a[N][N],b[N][N],ans[1000000][2],u,v,qwq[1000000][2]; ll qaq; signed main() { #ifndef ONLINE_JUDGE freopen("a.in","r",stdin); freopen("a.out","w",stdout); #endif n=read(),m=read(); for (int i=1;i<=n;i++) for (int j=1;j<=m;j++) qaq+=a[i][j]=read(); u=1000000; for (int i=0;i<=500;i++) { bool flag=0; for (int j=1;j<=n;j++) if (a[j][1]<i) {flag=1;break;} if (flag) break; memcpy(b,a,sizeof(b));v=0; for (int j=1;j<=i;j++) v++,qwq[v][0]=1,qwq[v][1]=1; for (int j=1;j<=n;j++) b[j][1]-=i; for (int j=1;j<=n;j++) { for (int x=1;x<=b[j][1];x++) v++,qwq[v][0]=0,qwq[v][1]=j; for (int x=2;x<=m;x++) b[j][x]-=b[j][1]; b[j][1]=0; } flag=0; for (int j=1;j<=n;j++) for (int x=1;x<=m;x++) if (b[j][x]<0) {flag=1;break;} if (!flag) { for (int j=2;j<=m;j++) { int y=510; for (int x=1;x<=n;x++) y=min(y,b[x][j]); for (int x=1;x<=y;x++) v++,qwq[v][0]=1,qwq[v][1]=j; for (int x=1;x<=n;x++) b[x][j]-=y; flag=0; for (int x=1;x<=n;x++) if (b[x][j]) {flag=1;break;} if (flag) break; } if (!flag&&v<u) { u=v;for (int j=1;j<=u;j++) ans[j][0]=qwq[j][0],ans[j][1]=qwq[j][1]; } } } if (u==1000000) {cout<<-1;return 0;} cout<<u<<endl; for (int i=1;i<=u;i++) { if (ans[i][0]==0) printf("row "); else printf("col "); printf("%d ",ans[i][1]); } return 0; //NOTICE LONG LONG!!!!! }
B:显然每个数的贡献与组合数有关,找找规律发现讨论一下n%4的几种情况就行了。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define N 200010 #define P 1000000007 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,a[N],b[N],fac[N],inv[N],ans; int C(int n,int m){if (n<0||m<0||m>n) return 0;return 1ll*fac[n]*inv[m]%P*inv[n-m]%P;} signed main() { #ifndef ONLINE_JUDGE freopen("b.in","r",stdin); freopen("b.out","w",stdout); #endif n=read(); for (int i=1;i<=n;i++) b[i]=a[i]=read(); fac[0]=fac[1]=1;for (int i=2;i<=n;i++)fac[i]=1ll*fac[i-1]*i%P; inv[0]=inv[1]=1;for (int i=2;i<=n;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P; for (int i=2;i<=n;i++) inv[i]=1ll*inv[i]*inv[i-1]%P; if (n%4==1) { for (int i=1;i<=n;i++) if (i&1) ans=(ans+1ll*a[i]*C(n/2,i/2))%P; } else if (n%4==3) { for (int i=1;i<=n;i++) if (i&1) ans=(ans+1ll*a[i]*(C((n-3)/2,i/2)-C((n-3)/2,i/2-1)+P))%P; else ans=(ans+2ll*a[i]*C((n-3)/2,i/2-1))%P; } else { for (int i=1;i<=n;i++) if ((i&1)||n%4==2) ans=(ans+1ll*a[i]*C(n/2-1,(i-1)/2))%P; else ans=(ans-1ll*a[i]*C(n/2-1,i/2-1)%P+P)%P; } cout<<ans; return 0; //NOTICE LONG LONG!!!!! }
C:显然依赖关系形成一棵树。设f[i][j]为i子树选j个的最小代价,其中根必须使用优惠券;g[i][j]为i子树选j个的最小代价,不能使用优惠券。直接背包即可,众所周知复杂度O(n2)。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define N 5010 #define inf 1010000000 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,m,p[N],f[N][N],s[N][N],size[N],t,c[N],d[N]; struct data2{int to,nxt; }edge[N]; void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;} void dfs(int k) { size[k]=1;s[k][1]=c[k];f[k][1]=d[k];f[k][0]=inf; for (int i=p[k];i;i=edge[i].nxt) { dfs(edge[i].to); for (int j=size[k]+1;j<=size[k]+size[edge[i].to];j++) f[k][j]=s[k][j]=inf; for (int j=size[k];j>=0;j--) for (int x=size[edge[i].to];x>=0;x--) s[k][j+x]=min(s[k][j+x],s[k][j]+s[edge[i].to][x]), f[k][j+x]=min(f[k][j+x],f[k][j]+min(s[edge[i].to][x],f[edge[i].to][x])); size[k]+=size[edge[i].to]; } } signed main() { #ifndef ONLINE_JUDGE freopen("b.in","r",stdin); freopen("b.out","w",stdout); #endif n=read(),m=read(); for (int i=1;i<=n;i++) { c[i]=read(),d[i]=c[i]-read(); if (i>1) addedge(read(),i); } dfs(1); int ans=0; for (int i=0;i<=n;i++) if (f[1][i]<=m||s[1][i]<=m) ans=i; cout<<ans; return 0; //NOTICE LONG LONG!!!!! }
D:枚举第一维,剩下两维看成一个平面,考虑每张牌对答案的限制。容易发现根据第一维是大还是小分成两类,分别将答案所对应的点限制在一块矩形区域(或两个矩形的并),且对于同一张牌,后者对应的区域包含前者。现在要动态维护这些区域的交的面积。
考虑改为求其补集的并。注意到这些矩形底部都在坐标轴上。那么相当于要支持区间取max区间求和。并且可以注意到其矩形并构成下降阶梯状。于是建棵线段树,修改时线段树上二分时找到边界,区间取max改为区间覆盖即可。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> #include<cassert> using namespace std; #define ll long long #define N 500010 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,A,B,C,L[N<<2],R[N<<2],lazy[N<<2],mx[N<<2]; ll ans,tree[N<<2]; struct data { int x,y,z; bool operator <(const data&a) const { return x<a.x; } }a[N]; void up(int k) { tree[k]=tree[k<<1]+tree[k<<1|1]; mx[k]=max(mx[k<<1],mx[k<<1|1]); } void update(int k,int x) { tree[k]=1ll*(R[k]-L[k]+1)*x; lazy[k]=mx[k]=x; } void down(int k) { update(k<<1,lazy[k]); update(k<<1|1,lazy[k]); lazy[k]=0; } void build(int k,int l,int r) { L[k]=l,R[k]=r; if (l==r) return; int mid=l+r>>1; build(k<<1,l,mid); build(k<<1|1,mid+1,r); } int find(int k,int x) { if (L[k]==R[k]) return L[k]+(mx[k]>=x); if (lazy[k]) down(k); if (mx[k<<1|1]>=x) return find(k<<1|1,x); else return find(k<<1,x); }//��һ��<x��λ�� void cover(int k,int l,int r,int x) { if (L[k]==l&&R[k]==r) {update(k,x);return;} if (lazy[k]) down(k); int mid=L[k]+R[k]>>1; if (r<=mid) cover(k<<1,l,r,x); else if (l>mid) cover(k<<1|1,l,r,x); else cover(k<<1,l,mid,x),cover(k<<1|1,mid+1,r,x); up(k); } void modify(int x,int y) { int u=find(1,y); if (u<=x) cover(1,u,x,y); } signed main() { #ifndef ONLINE_JUDGE freopen("a.in","r",stdin); freopen("a.out","w",stdout); #endif n=read(),A=read(),B=read(),C=read(); for (int i=1;i<=n;i++) a[i].x=read(),a[i].y=read(),a[i].z=read(); sort(a+1,a+n+1); build(1,1,B+1); for (int i=1;i<=n;i++) modify(a[i].y,a[i].z); int x=n+1; for (int i=A;i>=1;i--) { while (a[x-1].x>=i) { x--; modify(B,a[x].z); modify(a[x].y,C); } ans+=1ll*B*C-tree[1]; } cout<<ans; return 0; //NOTICE LONG LONG!!!!! }