• Codeforces Round #454 Div. 1


      B:考虑2*m怎么构造。因为要求相邻的数不能再相邻,容易想到黑白染色之类的东西,考虑染个色然后大概把黑点扔一边白点扔一边。显然m<=3时无解。对m>4,m为偶数时,如1 2 3 4 5 6   7 8 9 10 11 12,就变换成1 3 5 2 4 6   8 10 12 7 9 11;m为奇数时,如1 2 3 4 5   6 7 8 9 10,就变换成1 3 5 2 4   7 9 6 8 10(当然奇偶没有本质区别)。非常开心的发现我们只要把2*m的方案往下复制就可以得到n*m的方案了。n>3和m>3没有本质区别。上面的构造对m=4不适用,直接把样例搬过来就好,但要判n为奇数的情况,最后一行特殊处理。最后特判一下n=m=3和n=m=1,随便构造一组即可。

    #include<iostream> 
    #include<cstdio>
    #include<cmath>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    #define ll long long
    #define N 100010
    char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
    int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
    int read()
    {
    	int x=0,f=1;char c=getchar();
    	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    	while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    	return x*f;
    }
    int n,m,a[2][N],b[2][N];
    signed main()
    {
    #ifndef ONLINE_JUDGE
    	freopen("c.in","r",stdin);
    	freopen("c.out","w",stdout);
    #endif
    	cin>>n>>m;
    	if (n==1&&m==1) {cout<<"YES"<<endl;cout<<"1";return 0;}
    	if (n==3&&m==3)
    	{
    		cout<<"YES"<<endl;
    		cout<<"6 1 8"<<endl;
    		cout<<"7 5 3"<<endl;
    		cout<<"2 9 4"<<endl;
    		return 0;
    	}
    	if (n<=3&&m<=3) {cout<<"NO";return 0;}
    	cout<<"YES"<<endl;
    	if (m>3)
    	{
    		for (int i=1;i<=m;i++) a[0][i]=i,a[1][i]=i+m;
    		if (m>4)
    		for (int i=1;i<=m;i++)
    		{
    			if (i<=(m+1>>1)) b[0][i]=a[0][i*2-1];else b[0][i]=a[0][(i-(m+1>>1))<<1];
    			if (i<=(m>>1)) b[1][i]=a[1][i*2];else b[1][i]=a[1][(i-(m>>1))*2-1];
    		}
    		else
    		{
    			b[0][1]=a[1][1];b[0][2]=a[0][4];b[0][3]=a[1][3];b[0][4]=a[0][2];
    			b[1][1]=a[0][3];b[1][2]=a[1][2];b[1][3]=a[0][1];b[1][4]=a[1][4];
    		}
    		for (int i=0;i<n-(m==4&&(n&1));i++)
    		{
    			for (int j=1;j<=m;j++)
    			printf("%d ",b[i&1][j]+(i-(i&1))*m);
    			printf("
    ");
    		}
    		if (m==4&&(n&1)) cout<<n*m-2<<' '<<n*m<<' '<<n*m-3<<' '<<n*m-1<<endl;
    	}
    	else
    	{
    		swap(n,m);
    		for (int i=1;i<=m;i++) a[0][i]=(i-1)*n+1,a[1][i]=(i-1)*n+2;
    		if (m>4)
    		for (int i=1;i<=m;i++)
    		{
    			if (i<=(m+1>>1)) b[0][i]=a[0][i*2-1];else b[0][i]=a[0][(i-(m+1>>1))<<1];
    			if (i<=(m>>1)) b[1][i]=a[1][i*2];else b[1][i]=a[1][(i-(m>>1))*2-1];
    		}
    		else
    		{
    			b[0][1]=a[1][1];b[0][2]=a[0][4];b[0][3]=a[1][3];b[0][4]=a[0][2];
    			b[1][1]=a[0][3];b[1][2]=a[1][2];b[1][3]=a[0][1];b[1][4]=a[1][4];
    		}
    		swap(n,m);
    		for (int i=1;i<=n;i++)
    		{
    			for (int j=0;j<m-(n==4&&(m&1));j++)
    			printf("%d ",b[j&1][i]+j-(j&1));
    			if (n==4&&(m&1))
    			{
    				if (i==1) cout<<2*m;
    				if (i==2) cout<<4*m;
    				if (i==3) cout<<1*m;
    				if (i==4) cout<<3*m;
    			}
    			printf("
    ");
    		}
    	}
    	return 0;
    	//NOTICE LONG LONG!!!!!
    }

      C:冷静一下可以发现交换操作顺序对结果并没有影响,于是暴力枚举对哪个点集操作即可。但枚举完暴力验证可能不能做到很优美的复杂度。注意到最后一步操作的点一定是与所有点相连的,于是暴力dfs过程中压位记录每个点与其他点是否直接相连,操作的影响可以O(n)更新,即可做到O(2n·n)。

    #include<iostream> 
    #include<cstdio>
    #include<cmath>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    #define ll long long
    #define N 22
    char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
    int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
    int read()
    {
    	int x=0,f=1;char c=getchar();
    	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    	while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    	return x*f;
    }
    int n,m,a[N][N],f[N],size[1<<N],LG2[1<<N],ans,End;
    bool flag[1<<N];
    void dfs(int i,int *f)
    {
    	flag[i]=1;
    	for (int j=0;j<n;j++)
    	if (!flag[i|(1<<j)])
    	{
    		int g[N];
    		for (int x=0;x<n;x++) g[x]=f[x];
    		for (int x=0;x<n;x++)
    		if (g[j]&(1<<x)) f[x]|=g[j];
    		dfs(i|(1<<j),f);
    		for (int x=0;x<n;x++) f[x]=g[x];
    	}
    	for (int j=0;j<n;j++)
    	if (f[j]==(1<<n)-1&&size[ans]>size[i]) ans=i,End=j;
    }
    signed main()
    {
    #ifndef ONLINE_JUDGE
    	freopen("c.in","r",stdin);
    	freopen("c.out","w",stdout);
    #endif
    	n=read(),m=read();if (m==n*(n-1)/2) {cout<<0;return 0;} 
    	while (m--)
    	{
    		int x=read()-1,y=read()-1;
    		a[x][y]=a[y][x]=1;
    	}
    	for (int i=1;i<(1<<n);i++) size[i]=size[i^(i&-i)]+1,LG2[i]=size[i]==1?LG2[i>>1]+1:0;
    	for (int i=0;i<n;i++)
    		for (int j=0;j<n;j++)
    		if (a[i][j]||i==j) f[i]|=1<<j;
    	ans=(1<<n)-1;
    	dfs(0,f);
    	cout<<size[ans]+1<<endl;
    	while (ans) cout<<LG2[ans&-ans]<<' ',ans^=ans&-ans;
    	cout<<End+1;
    	return 0;
    	//NOTICE LONG LONG!!!!!
    }
    

      D:经典trick?恶心至极的就是判扩展欧拉定理要不要+φ(p),写的乱七八糟不知道是啥。

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    #include<cassert>
    using namespace std;
    #define ll long long
    #define N 100010
    char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
    int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
    int read()
    {
    	int x=0,f=1;char c=getchar();
    	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    	while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    	return x*f;
    }
    int n,m,p[70],a[N],pre[N],pos[N],cnt,q;
    int ksm(int a,int k,int P)
    {
    	int s=1;
    	for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P;
    	return s;
    }
    ll KSM(int a,ll k)
    {
    	ll s=1;if (k>32) return 2000000000;
    	for (int i=1;i<=k;i++)
    	{
    		s*=a;
    		if (s>=2000000000) break;
    	}
    	return s;
    }
    ll get(int l,int r)
    {
    	ll s=1;
    	for (int i=pre[r];i>=l;i=pre[i-1])
    	{
    		s=KSM(a[i],s);
    		if (s>=2000000000) break;
    	}
    	return s;
    }
    signed main()
    {
    #ifndef ONLINE_JUDGE
    	freopen("c.in","r",stdin);
    	freopen("c.out","w",stdout);
    #endif
    	n=read(),p[0]=read();
    	m=0;
    	while (p[m]>1)
    	{
    		m++;int x=p[m]=p[m-1];
    		for (int i=2;i*i<=x;i++)
    		if (x%i==0){p[m]/=i;p[m]*=i-1;while (x%i==0) x/=i;}
    		if (x>1) p[m]/=x,p[m]*=x-1;
    	}
    	for (int i=1;i<=n;i++) a[i]=read();
    	for (int i=1;i<=n;i++) if (a[i]==1) pos[++cnt]=i,pre[i]=pre[i-1];else pre[i]=i;
    	pos[++cnt]=n+1;
    	q=read();
    	while (q--)
    	{
    		int l=read(),r=read(),ans=1;
    		int u=*lower_bound(pos+1,pos+cnt+1,l);
    		ll t=get(min(min(r,l+m),u-1)+1,r);if (u<=min(r,l+m)) t=1;
    		for (int i=min(min(r,l+m),u-1);i>=l;i--)
    		{
    			ans=ksm(a[i],ans,p[i-l]);t=KSM(a[i],t);
    			if (i>l&&t>=p[i-l]) ans+=p[i-l];
    		}
    		printf("%d
    ",ans%p[0]);
    	}
    	return 0;
    	//NOTICE LONG LONG!!!!!
    }
    

      

  • 相关阅读:
    vue导出Excel表格(纯前端)
    Ubuntu16.04+CUDA8.0+CUNN5.1+caffe+tensorflow+Theano
    python高级特性
    顺序容器
    感知机和支持向量机
    IO库
    字符串、向量、数组、迭代器

    c++函数
    C++语句
  • 原文地址:https://www.cnblogs.com/Gloid/p/10452695.html
Copyright © 2020-2023  润新知