B:考虑2*m怎么构造。因为要求相邻的数不能再相邻,容易想到黑白染色之类的东西,考虑染个色然后大概把黑点扔一边白点扔一边。显然m<=3时无解。对m>4,m为偶数时,如1 2 3 4 5 6 7 8 9 10 11 12,就变换成1 3 5 2 4 6 8 10 12 7 9 11;m为奇数时,如1 2 3 4 5 6 7 8 9 10,就变换成1 3 5 2 4 7 9 6 8 10(当然奇偶没有本质区别)。非常开心的发现我们只要把2*m的方案往下复制就可以得到n*m的方案了。n>3和m>3没有本质区别。上面的构造对m=4不适用,直接把样例搬过来就好,但要判n为奇数的情况,最后一行特殊处理。最后特判一下n=m=3和n=m=1,随便构造一组即可。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define N 100010 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,m,a[2][N],b[2][N]; signed main() { #ifndef ONLINE_JUDGE freopen("c.in","r",stdin); freopen("c.out","w",stdout); #endif cin>>n>>m; if (n==1&&m==1) {cout<<"YES"<<endl;cout<<"1";return 0;} if (n==3&&m==3) { cout<<"YES"<<endl; cout<<"6 1 8"<<endl; cout<<"7 5 3"<<endl; cout<<"2 9 4"<<endl; return 0; } if (n<=3&&m<=3) {cout<<"NO";return 0;} cout<<"YES"<<endl; if (m>3) { for (int i=1;i<=m;i++) a[0][i]=i,a[1][i]=i+m; if (m>4) for (int i=1;i<=m;i++) { if (i<=(m+1>>1)) b[0][i]=a[0][i*2-1];else b[0][i]=a[0][(i-(m+1>>1))<<1]; if (i<=(m>>1)) b[1][i]=a[1][i*2];else b[1][i]=a[1][(i-(m>>1))*2-1]; } else { b[0][1]=a[1][1];b[0][2]=a[0][4];b[0][3]=a[1][3];b[0][4]=a[0][2]; b[1][1]=a[0][3];b[1][2]=a[1][2];b[1][3]=a[0][1];b[1][4]=a[1][4]; } for (int i=0;i<n-(m==4&&(n&1));i++) { for (int j=1;j<=m;j++) printf("%d ",b[i&1][j]+(i-(i&1))*m); printf(" "); } if (m==4&&(n&1)) cout<<n*m-2<<' '<<n*m<<' '<<n*m-3<<' '<<n*m-1<<endl; } else { swap(n,m); for (int i=1;i<=m;i++) a[0][i]=(i-1)*n+1,a[1][i]=(i-1)*n+2; if (m>4) for (int i=1;i<=m;i++) { if (i<=(m+1>>1)) b[0][i]=a[0][i*2-1];else b[0][i]=a[0][(i-(m+1>>1))<<1]; if (i<=(m>>1)) b[1][i]=a[1][i*2];else b[1][i]=a[1][(i-(m>>1))*2-1]; } else { b[0][1]=a[1][1];b[0][2]=a[0][4];b[0][3]=a[1][3];b[0][4]=a[0][2]; b[1][1]=a[0][3];b[1][2]=a[1][2];b[1][3]=a[0][1];b[1][4]=a[1][4]; } swap(n,m); for (int i=1;i<=n;i++) { for (int j=0;j<m-(n==4&&(m&1));j++) printf("%d ",b[j&1][i]+j-(j&1)); if (n==4&&(m&1)) { if (i==1) cout<<2*m; if (i==2) cout<<4*m; if (i==3) cout<<1*m; if (i==4) cout<<3*m; } printf(" "); } } return 0; //NOTICE LONG LONG!!!!! }
C:冷静一下可以发现交换操作顺序对结果并没有影响,于是暴力枚举对哪个点集操作即可。但枚举完暴力验证可能不能做到很优美的复杂度。注意到最后一步操作的点一定是与所有点相连的,于是暴力dfs过程中压位记录每个点与其他点是否直接相连,操作的影响可以O(n)更新,即可做到O(2n·n)。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define N 22 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,m,a[N][N],f[N],size[1<<N],LG2[1<<N],ans,End; bool flag[1<<N]; void dfs(int i,int *f) { flag[i]=1; for (int j=0;j<n;j++) if (!flag[i|(1<<j)]) { int g[N]; for (int x=0;x<n;x++) g[x]=f[x]; for (int x=0;x<n;x++) if (g[j]&(1<<x)) f[x]|=g[j]; dfs(i|(1<<j),f); for (int x=0;x<n;x++) f[x]=g[x]; } for (int j=0;j<n;j++) if (f[j]==(1<<n)-1&&size[ans]>size[i]) ans=i,End=j; } signed main() { #ifndef ONLINE_JUDGE freopen("c.in","r",stdin); freopen("c.out","w",stdout); #endif n=read(),m=read();if (m==n*(n-1)/2) {cout<<0;return 0;} while (m--) { int x=read()-1,y=read()-1; a[x][y]=a[y][x]=1; } for (int i=1;i<(1<<n);i++) size[i]=size[i^(i&-i)]+1,LG2[i]=size[i]==1?LG2[i>>1]+1:0; for (int i=0;i<n;i++) for (int j=0;j<n;j++) if (a[i][j]||i==j) f[i]|=1<<j; ans=(1<<n)-1; dfs(0,f); cout<<size[ans]+1<<endl; while (ans) cout<<LG2[ans&-ans]<<' ',ans^=ans&-ans; cout<<End+1; return 0; //NOTICE LONG LONG!!!!! }
D:经典trick?恶心至极的就是判扩展欧拉定理要不要+φ(p),写的乱七八糟不知道是啥。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> #include<cassert> using namespace std; #define ll long long #define N 100010 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,m,p[70],a[N],pre[N],pos[N],cnt,q; int ksm(int a,int k,int P) { int s=1; for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P; return s; } ll KSM(int a,ll k) { ll s=1;if (k>32) return 2000000000; for (int i=1;i<=k;i++) { s*=a; if (s>=2000000000) break; } return s; } ll get(int l,int r) { ll s=1; for (int i=pre[r];i>=l;i=pre[i-1]) { s=KSM(a[i],s); if (s>=2000000000) break; } return s; } signed main() { #ifndef ONLINE_JUDGE freopen("c.in","r",stdin); freopen("c.out","w",stdout); #endif n=read(),p[0]=read(); m=0; while (p[m]>1) { m++;int x=p[m]=p[m-1]; for (int i=2;i*i<=x;i++) if (x%i==0){p[m]/=i;p[m]*=i-1;while (x%i==0) x/=i;} if (x>1) p[m]/=x,p[m]*=x-1; } for (int i=1;i<=n;i++) a[i]=read(); for (int i=1;i<=n;i++) if (a[i]==1) pos[++cnt]=i,pre[i]=pre[i-1];else pre[i]=i; pos[++cnt]=n+1; q=read(); while (q--) { int l=read(),r=read(),ans=1; int u=*lower_bound(pos+1,pos+cnt+1,l); ll t=get(min(min(r,l+m),u-1)+1,r);if (u<=min(r,l+m)) t=1; for (int i=min(min(r,l+m),u-1);i>=l;i--) { ans=ksm(a[i],ans,p[i-l]);t=KSM(a[i],t); if (i>l&&t>=p[i-l]) ans+=p[i-l]; } printf("%d ",ans%p[0]); } return 0; //NOTICE LONG LONG!!!!! }