本文用讲一下指定分布的随机抽样方法:MC(Monte Carlo), MC(Markov Chain), MCMC(Markov Chain Monte Carlo)的基本原理,并用R语言实现了几个例子:
1. Markov Chain (马尔科夫链)
2. Random Walk(随机游走)
3. MCMC具体方法:
3.1 M-H法
3.2 Gibbs采样
PS:本篇blog为ese机器学习短期班参考资料(20140516课程),课上讲详述。
下面三节分别就前面几点简要介绍基本概念,并附上代码。这里的概念我会用最最naive的话去概括,详细内容就看我最下方推荐的链接吧(*^__^*)
0. MC(Monte Carlo)
生成指定分布的随机数的抽样。
1. Markov Chain (马尔科夫链)
假设 f(t) 是一个时间序列,Markov Chain是假设f(t+1)只与f(t)有关的随机过程。
Implement in R:
- #author: rachel @ ZJU
- #email: zrqjennifer@gmail.com
- N = 10000
- signal = vector(length = N)
- signal[1] = 0
- for (i in 2:N)
- {
- # random select one offset (from [-1,1]) to signal[i-1]
- signal[i] = signal[i-1] + sample(c(-1,1),1)
- }
- plot( signal,type = 'l',col = 'red')
2. Random Walk(随机游走)
如布朗运动,只是上面Markov Chain的二维拓展版:
Implement in R:
- #author: rachel @ ZJU
- #email: zrqjennifer@gmail.com
- N = 100
- x = vector(length = N)
- y = vector(length = N)
- x[1] = 0
- y[1] = 0
- for (i in 2:N)
- {
- x[i] = x[i-1] + rnorm(1)
- y[i] = y[i-1] + rnorm(1)
- }
- plot(x,y,type = 'l', col='red')
3. MCMC具体方法:
MCMC方法最早由Metropolis(1954)给出,后来Metropolis的算法由Hastings改进,合称为M-H算法。M-H算法是MCMC的基础方法。由M-H算法演化出了许多新的抽样方法,包括目前在MCMC中最常用的Gibbs抽样也可以看做M-H算法的一个特例[2]。
概括起来,MCMC基于这样的理论,在满足【平衡方程】(detailed balance equation)条件下,MCMC可以通过很长的状态转移到达稳态。
3.1 M-H法
1. 构造目标分布,初始化x0
2. 在第n步,从q(y|x_n) 生成新状态y
3. 以一定概率((pi(y) * P(x_n|y)) / (pi(x) * P(y|x_n)))接受y <PS: 看看上面的平衡方程,这个概率表示什么呢?参考这里和[1]>
implementation in R:
- #author: rachel @ ZJU
- #email: zrqjennifer@gmail.com
- N = 10000
- x = vector(length = N)
- x[1] = 0
- # uniform variable: u
- u = runif(N)
- m_sd = 5
- freedom = 5
- for (i in 2:N)
- {
- y = rnorm(1,mean = x[i-1],sd = m_sd)
- print(y)
- #y = rt(1,df = freedom)
- p_accept = dnorm(x[i-1],mean = y,sd = abs(2*y+1)) / dnorm(y, mean = x[i-1],sd = abs(2*x[i-1]+1))
- #print (p_accept)
- if ((u[i] <= p_accept))
- {
- x[i] = y
- print("accept")
- }
- else
- {
- x[i] = x[i-1]
- print("reject")
- }
- }
- plot(x,type = 'l')
- dev.new()
- hist(x)
3.2 Gibbs采样
那么在Gibbs采样中对其迭代采样的过程,实现如下:
- #author: rachel @ ZJU
- #email: zrqjennifer@gmail.com
- #define Gauss Posterior Distribution
- p_ygivenx <- function(x,m1,m2,s1,s2)
- {
- return (rnorm(1,m2+rho*s2/s1*(x-m1),sqrt(1-rho^2)*s2 ))
- }
- p_xgiveny <- function(y,m1,m2,s1,s2)
- {
- return (rnorm(1,m1+rho*s1/s2*(y-m2),sqrt(1-rho^2)*s1 ))
- }
- N = 5000
- K = 20 #iteration in each sampling
- x_res = vector(length = N)
- y_res = vector(length = N)
- m1 = 10; m2 = -5; s1 = 5; s2 = 2
- rho = 0.5
- y = m2
- for (i in 1:N)
- {
- for(i in 1:K)
- {
- x = p_xgiveny(y, m1,m2,s1,s2)
- y = p_ygivenx(x, m1,m2,s1,s2)
- # print(x)
- x_res[i] = x;
- y_res[i] = y;
- }
- }
- hist(x_res,freq = 1)
- dev.new()
- plot(x_res,y_res)
- library(MASS)
- valid_range = seq(from = N/2, to = N, by = 1)
- MVN.kdensity <- kde2d(x_res[valid_range], y_res[valid_range], h = 10) #估计核密度
- plot(x_res[valid_range], y_res[valid_range], col = "blue", xlab = "x", ylab = "y")
- contour(MVN.kdensity, add = TRUE)#二元正态分布等高线图
- #real distribution
- # real = mvrnorm(N,c(m1,m2),diag(c(s1,s2)))
- # dev.new()
- # plot(real[1:N,1],real[1:N,2])
x分布图:
(x,y)分布图:
Reference:
1. http://www2.isye.gatech.edu/~brani/isyebayes/bank/handout10.pdf
2. http://site.douban.com/182577/widget/notes/10567181/note/292072927/
3. book: http://statweb.stanford.edu/~owen/mc/
4. Classic: http://cis.temple.edu/~latecki/Courses/RobotFall07/PapersFall07/andrieu03introduction.pdf
from: http://blog.csdn.net/abcjennifer/article/details/25908495