• 全景图像拼接


    全景图像拼接(opencv3.4.2)

    原图:

       

         图一                                                                                             图二                                                                               图三

       

                                图四                                                                                        图五

    opencv3.4.2   SIFT特征点提取:

    #include <opencv2/opencv.hpp>
    #include <opencv2/xfeatures2d.hpp>
    #include <iostream>
    
    using namespace cv;
    using namespace std;
    using namespace cv::xfeatures2d;
    
    int main(int argc, char** argv) {
        Mat src = imread("L:/opencv_picture/10.jpg");
        if (src.empty()) {
            printf("could not load image...
    ");
            return -1;
        }
        namedWindow("input image", CV_WINDOW_AUTOSIZE);
        imshow("input image", src);
    
        int numFeatures = 400;
        Ptr<SIFT> detector = SIFT::create(numFeatures);
        vector<KeyPoint> keypoints;
        detector->detect(src, keypoints, Mat());
        printf("Total KeyPoints : %d
    ", keypoints.size());
    
        Mat keypoint_img;
        drawKeypoints(src, keypoints, keypoint_img, Scalar::all(-1), DrawMatchesFlags::DEFAULT);
        namedWindow("SIFT KeyPoints", CV_WINDOW_AUTOSIZE);
        imshow("SIFT KeyPoints", keypoint_img);
    
        waitKey(0);
        return 0;
    }

       

    SIFT特征点匹配:

    #include <opencv2/opencv.hpp>
    #include <opencv2/xfeatures2d.hpp>
    #include <iostream>
    #include <math.h>
    
    using namespace cv;
    using namespace std;
    using namespace cv::xfeatures2d;
    
    int main(int argc, char** argv) {
        Mat img1 = imread("L:opencv_picture/9.jpg");
        Mat img2 = imread("L:opencv_picture/10.jpg");
        if (!img1.data || !img2.data) {
            return -1;
        }
        imshow("object image", img1);
        imshow("object in scene", img2);
    
        // surf featurs extraction
        int minHessian = 800;
        Ptr<SURF> detector = SURF::create(minHessian);
        vector<KeyPoint> keypoints_obj;
        vector<KeyPoint> keypoints_scene;
        Mat descriptor_obj, descriptor_scene;
        detector->detectAndCompute(img1, Mat(), keypoints_obj, descriptor_obj);
        detector->detectAndCompute(img2, Mat(), keypoints_scene, descriptor_scene);
    
        // matching
        FlannBasedMatcher matcher;
        vector<DMatch> matches;
        matcher.match(descriptor_obj, descriptor_scene, matches);
    
        // find good matched points
        double minDist = 1000;
        double maxDist = 0;
        for (int i = 0; i < descriptor_obj.rows; i++) {
            double dist = matches[i].distance;
            if (dist > maxDist) {
                maxDist = dist;
            }
            if (dist < minDist) {
                minDist = dist;
            }
        }
        printf("max distance : %f
    ", maxDist);
        printf("min distance : %f
    ", minDist);
        vector<DMatch> goodMatches;
        for (int i = 0; i < descriptor_obj.rows; i++) {
            double dist = matches[i].distance;
            if (dist < max(4 * minDist, 0.02)) {
                goodMatches.push_back(matches[i]);
            }
        }
    
        Mat matchesImg;
        drawMatches(img1, keypoints_obj, img2, keypoints_scene, goodMatches, matchesImg, Scalar::all(-1),
            Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS
        );
        imshow("Flann Matching Result", matchesImg);
    
        waitKey(0);
        return 0;
    }

     

    两张图像拼接:

    #include <iostream>
    #include <opencv2/core/core.hpp>
    #include <opencv2/highgui/highgui.hpp>
    #include <opencv2/imgproc/imgproc.hpp>
    #include <opencv2/stitching.hpp>
    #include "windows.h"
    
    using namespace std;
    using namespace cv;
    
    bool try_use_gpu = false;
    vector<Mat> imgs;
    string result_name = "dst1.jpg";
    int main(int argc, char * argv[])
    {
        Mat img1 = imread("L:/opencv_picture/9.jpg");
        Mat img2 = imread("L:/opencv_picture/10.jpg");
        imshow("p1", img1);
        imshow("p2", img2);
    
        long t0 = GetTickCount();
    
        if (img1.empty() || img2.empty())
        {
            cout << "Can't read image" << endl;
            return -1;
        }
        imgs.push_back(img1);
        imgs.push_back(img2);
    
        Stitcher stitcher = Stitcher::createDefault(try_use_gpu);
        // 使用stitch函数进行拼接
        Mat pano;
        Stitcher::Status status = stitcher.stitch(imgs, pano);
        if (status != Stitcher::OK)
        {
            cout << "Can't stitch images, error code = " << int(status) << endl;
            return -1;
        }
        long t1 = GetTickCount();
        imwrite(result_name, pano);
        Mat pano2 = pano.clone();
        // 显示源图像,和结果图像
        imshow("全景图像", pano);
    
        cout << "Time: " << t1 - t0 << endl;
    
        if (waitKey() == 27)
            return 0;
     }

     

    五张图像全景图像拼接结果:

  • 相关阅读:
    iOS 5中的strong和weak关键字解析
    【ios】第三方开源类库SSCheckBoxView
    NSRange
    ios开发之在iOS应用中加载自定义字体显示
    IOS中NSUserDefaults的用法(本地数据存储)
    关于setTimeout运行机制
    SpringMVC入门学习框架搭建
    HashMap学习总结
    关于服务器跨域问题(使用cors解决)
    Spring IOC容器和bean
  • 原文地址:https://www.cnblogs.com/Jack-Elvis/p/11341446.html
Copyright © 2020-2023  润新知