全景图像拼接(opencv3.4.2)
原图:
图一 图二 图三
图四 图五
opencv3.4.2 SIFT特征点提取:
#include <opencv2/opencv.hpp> #include <opencv2/xfeatures2d.hpp> #include <iostream> using namespace cv; using namespace std; using namespace cv::xfeatures2d; int main(int argc, char** argv) { Mat src = imread("L:/opencv_picture/10.jpg"); if (src.empty()) { printf("could not load image... "); return -1; } namedWindow("input image", CV_WINDOW_AUTOSIZE); imshow("input image", src); int numFeatures = 400; Ptr<SIFT> detector = SIFT::create(numFeatures); vector<KeyPoint> keypoints; detector->detect(src, keypoints, Mat()); printf("Total KeyPoints : %d ", keypoints.size()); Mat keypoint_img; drawKeypoints(src, keypoints, keypoint_img, Scalar::all(-1), DrawMatchesFlags::DEFAULT); namedWindow("SIFT KeyPoints", CV_WINDOW_AUTOSIZE); imshow("SIFT KeyPoints", keypoint_img); waitKey(0); return 0; }
SIFT特征点匹配:
#include <opencv2/opencv.hpp> #include <opencv2/xfeatures2d.hpp> #include <iostream> #include <math.h> using namespace cv; using namespace std; using namespace cv::xfeatures2d; int main(int argc, char** argv) { Mat img1 = imread("L:opencv_picture/9.jpg"); Mat img2 = imread("L:opencv_picture/10.jpg"); if (!img1.data || !img2.data) { return -1; } imshow("object image", img1); imshow("object in scene", img2); // surf featurs extraction int minHessian = 800; Ptr<SURF> detector = SURF::create(minHessian); vector<KeyPoint> keypoints_obj; vector<KeyPoint> keypoints_scene; Mat descriptor_obj, descriptor_scene; detector->detectAndCompute(img1, Mat(), keypoints_obj, descriptor_obj); detector->detectAndCompute(img2, Mat(), keypoints_scene, descriptor_scene); // matching FlannBasedMatcher matcher; vector<DMatch> matches; matcher.match(descriptor_obj, descriptor_scene, matches); // find good matched points double minDist = 1000; double maxDist = 0; for (int i = 0; i < descriptor_obj.rows; i++) { double dist = matches[i].distance; if (dist > maxDist) { maxDist = dist; } if (dist < minDist) { minDist = dist; } } printf("max distance : %f ", maxDist); printf("min distance : %f ", minDist); vector<DMatch> goodMatches; for (int i = 0; i < descriptor_obj.rows; i++) { double dist = matches[i].distance; if (dist < max(4 * minDist, 0.02)) { goodMatches.push_back(matches[i]); } } Mat matchesImg; drawMatches(img1, keypoints_obj, img2, keypoints_scene, goodMatches, matchesImg, Scalar::all(-1), Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); imshow("Flann Matching Result", matchesImg); waitKey(0); return 0; }
两张图像拼接:
#include <iostream> #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> #include <opencv2/stitching.hpp> #include "windows.h" using namespace std; using namespace cv; bool try_use_gpu = false; vector<Mat> imgs; string result_name = "dst1.jpg"; int main(int argc, char * argv[]) { Mat img1 = imread("L:/opencv_picture/9.jpg"); Mat img2 = imread("L:/opencv_picture/10.jpg"); imshow("p1", img1); imshow("p2", img2); long t0 = GetTickCount(); if (img1.empty() || img2.empty()) { cout << "Can't read image" << endl; return -1; } imgs.push_back(img1); imgs.push_back(img2); Stitcher stitcher = Stitcher::createDefault(try_use_gpu); // 使用stitch函数进行拼接 Mat pano; Stitcher::Status status = stitcher.stitch(imgs, pano); if (status != Stitcher::OK) { cout << "Can't stitch images, error code = " << int(status) << endl; return -1; } long t1 = GetTickCount(); imwrite(result_name, pano); Mat pano2 = pano.clone(); // 显示源图像,和结果图像 imshow("全景图像", pano); cout << "Time: " << t1 - t0 << endl; if (waitKey() == 27) return 0; }
五张图像全景图像拼接结果: