本题有数学贪心解法和费用流解法
数学解法就看看luogu题解吧,窝太菜了
费用流就找建图法,依旧是设超级源点和汇点,初始数据就源点s向该点连点,流量就是初始量,代价为0,然后每个仓库向相邻的点连边,容量无限大,代价为1,再每个仓库向汇点连点,容量就是sum/n,代价为0,直接跑最大流最小费就行了,这样能保证源点出的汇点全进
typedef long long LL; typedef pair<LL, LL> PLL; typedef pair<int, int> PINT; const int maxm = 2000+5; const int INF = 0x3f3f3f3f; struct edge{ int u, v, cap, flow, cost, nex; } edges[maxm]; int head[maxm], cur[maxm], cnt, fa[maxm], d[maxm], n; bool inq[maxm]; void init() { memset(head, -1, sizeof(head)); } void addedge(int u, int v, int cap, int cost) { edges[cnt] = edge{u, v, cap, 0, cost, head[u]}; head[u] = cnt++; } bool spfa(int s, int t, int &flow, LL &cost) { for(int i = 0; i <= n+1; ++i) d[i] = INF; //init() memset(inq, false, sizeof(inq)); d[s] = 0, inq[s] = true; fa[s] = -1, cur[s] = INF; queue<int> q; q.push(s); while(!q.empty()) { int u = q.front(); q.pop(); inq[u] = false; for(int i = head[u]; i != -1; i = edges[i].nex) { edge& now = edges[i]; int v = now.v; if(now.cap > now.flow && d[v] > d[u] + now.cost) { d[v] = d[u] + now.cost; fa[v] = i; cur[v] = min(cur[u], now.cap - now.flow); if(!inq[v]) {q.push(v); inq[v] = true;} } } } if(d[t] == INF) return false; flow += cur[t]; cost += 1LL*d[t]*cur[t]; for(int u = t; u != s; u = edges[fa[u]].u) { edges[fa[u]].flow += cur[t]; edges[fa[u]^1].flow -= cur[t]; } return true; } int MincostMaxflow(int s, int t, LL &cost) { cost = 0; int flow = 0; while(spfa(s, t, flow, cost)); return flow; } void run_case() { init(); int sum = 0, x, l, r; cin >> n; int s = 0, t = n+1; for(int i = 1; i <= n; ++i) { cin >> x; sum += x; l = i-1, r = i+1; if(i == 1) l = n; else if(i == n) r = 1; addedge(s, i, x, 0), addedge(i, s, 0, 0); addedge(i, l, INF, 1), addedge(l, i, 0, -1); addedge(i, r, INF, 1), addedge(r, i, 0, -1); } sum /= n; for(int i = 1; i <= n; ++i) addedge(i, t, sum, 0), addedge(t, i, 0, 0); LL cost = 0; MincostMaxflow(s, t, cost); cout << cost; } int main() { ios::sync_with_stdio(false), cin.tie(0); run_case(); //cout.flush(); return 0; }