• Day6


    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q.
    Lines 2.. N+1: Line i+1 contains a single integer that is the height of cow i
    Lines N+2.. NQ+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1.. Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    思路:ST表板子题,ST[i][j]表示下表从i到i+2^j-1的最值,查询时,已知l与r,长度len=r-l+1,且2^log2(len)>len/2,令k=log2(len),ST[l][k]肯定超过了长度的一半,反向取后侧,r-m+1=2^len,另一侧就是ST[r-2^k+1][k]
    const int maxm = 5e4+10;
    
    int Max[maxm][20], Min[maxm][20], N, Q;
    
    int main() {
        scanf("%d%d", &N, &Q);
        int t, l, r;
        for(int i = 1; i <= N; ++i) {
            scanf("%d", &t);
            Max[i][0] = Min[i][0] = t;
        }
        for(int k = 1; (1<<k) <= N; ++k) {
            for(int i = 1; i+(1<<k)-1 <= N; ++i) {
                Max[i][k] = max(Max[i][k-1], Max[i+(1<<(k-1))][k-1]);
                Min[i][k] = min(Min[i][k-1], Min[i+(1<<(k-1))][k-1]);
            }
        }
        for(int i = 0; i < Q; ++i) {
            scanf("%d%d", &l, &r);
            int k = log((double)(r-l+1)) / log(2.0);
            printf("%d
    ", max(Max[l][k],Max[r-(1<<k)+1][k]) - min(Min[l][k], Min[r-(1<<k)+1][k]));
        }
        return 0;
    }
    View Code
    
    
  • 相关阅读:
    dock 安装部署和初级管理命令
    3 gogs+jenkins 触发远程构建及tomcat管理war包替换
    2 gitlab+jenkins maven自动打包更新
    1 gitlab+jenkins 自动化部署 持续集成
    Day7 面向对象进阶
    Day 6 面向对象初级
    day4 迭代器&生成器&递归&json&正则
    day5 常用模块
    day3 函数
    day2 数据及文件操作
  • 原文地址:https://www.cnblogs.com/GRedComeT/p/12198916.html
Copyright © 2020-2023  润新知