来源:http://wenku.baidu.com/view/9d2d5781d4d8d15abe234e35.html
我是用到什么就敲什么,敲好了就放在这里备用
#include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <cmath> using namespace std; const double EPS = 1e-9; const int MAXN = 40; struct Point3 //空间点 { double x, y, z; Point3( double x=0, double y=0, double z=0 ): x(x), y(y), z(z) { } Point3( const Point3& a ) { x = a.x; y = a.y; z = a.z; return; } void readPoint() { scanf( "%lf%lf%lf", &x, &y, &z ); } void showP() { printf("%f %f %f ", x, y, z); } Point3 operator+( Point3& rhs ) { return Point3( x+rhs.x, y+rhs.y, z+rhs.z ); } }; struct Line3 //空间直线 { Point3 a, b; }; struct plane3 //空间平面 { Point3 a, b, c; plane3(){} plane3( Point3 a, Point3 b, Point3 c ): a(a), b(b), c(c) { } }; Point3 Read_Point() { Point3 p; scanf("%lf%lf%lf", &p.x, &p.y, &p.z ); return p; } double dcmp( double a ) { if ( fabs( a ) < EPS ) return 0; return a < 0 ? -1 : 1; } //三维叉积 Point3 Cross3( Point3 u, Point3 v ) { Point3 ret; ret.x = u.y * v.z - v.y * u.z; ret.y = u.z * v.x - u.x * v.z; ret.z = u.x * v.y - u.y * v.x; return ret; } //三维点积 double Dot3( Point3 u, Point3 v ) { return u.x * v.x + u.y * v.y + u.z * v.z; } //矢量差 Point3 Subt( Point3 u, Point3 v ) { Point3 ret; ret.x = u.x - v.x; ret.y = u.y - v.y; ret.z = u.z - v.z; return ret; } //取平面法向量 Point3 NormalVector( plane3 s ) { return Cross3( Subt( s.a, s.b ), Subt( s.b, s.c ) ); } Point3 NormalVector( Point3 a, Point3 b, Point3 c ) { return Cross3( Subt( a, b ), Subt( b, c ) ); } //两点距离 double TwoPointDistance( Point3 p1, Point3 p2 ) { return sqrt( (p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y) + (p1.z - p2.z)*(p1.z - p2.z) ); } //向量的模 double VectorLenth( Point3 p ) { return sqrt( p.x*p.x + p.y*p.y + p.z*p.z ); } //空间直线距离,tmp为两直线的公共法向量 double LineToLine( Line3 u, Line3 v, Point3& tmp ) { tmp = Cross3( Subt( u.a, u.b ), Subt( v.a, v.b ) ); return fabs( Dot3( Subt(u.a, v.a), tmp ) ) / VectorLenth(tmp); } //取平面法向量 Point3 pvec( plane3 s ) { return Cross3( Subt( s.a, s.b ), Subt( s.b, s.c ) ); } //空间平面与直线的交点 Point3 Intersection( Line3 l, plane3 s ) { Point3 ret = pvec(s); double t = ( ret.x*(s.a.x-l.a.x)+ret.y*(s.a.y-l.a.y)+ret.z*(s.a.z-l.a.z) )/( ret.x*(l.b.x-l.a.x)+ret.y*(l.b.y-l.a.y)+ret.z*(l.b.z-l.a.z) ); ret.x = l.a.x + ( l.b.x - l.a.x ) * t; ret.y = l.a.y + ( l.b.y - l.a.y ) * t; ret.z = l.a.z + ( l.b.z - l.a.z ) * t; return ret; }