• 三维计算几何模板[不定期更新]


    来源:http://wenku.baidu.com/view/9d2d5781d4d8d15abe234e35.html

    我是用到什么就敲什么,敲好了就放在这里备用

    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    
    using namespace std;
    
    const double EPS = 1e-9;
    const int MAXN = 40;
    
    struct Point3  //空间点
    {
        double x, y, z;
        Point3( double x=0, double y=0, double z=0 ): x(x), y(y), z(z) { }
        Point3( const Point3& a )
        {
            x = a.x;
            y = a.y;
            z = a.z;
            return;
        }
        void readPoint()
        {
            scanf( "%lf%lf%lf", &x, &y, &z );
        }
        void showP()
        {
            printf("%f %f %f
    ", x, y, z);
        }
        Point3 operator+( Point3& rhs )
        {
            return Point3( x+rhs.x, y+rhs.y, z+rhs.z );
        }
    };
    
    struct Line3   //空间直线
    {
        Point3 a, b;
    };
    
    struct plane3   //空间平面
    {
        Point3 a, b, c;
        plane3(){}
        plane3( Point3 a, Point3 b, Point3 c ):
        a(a), b(b), c(c) { }
    };
    
    Point3 Read_Point()
    {
        Point3 p;
        scanf("%lf%lf%lf", &p.x, &p.y, &p.z );
        return p;
    }
    
    double dcmp( double a )
    {
        if ( fabs( a ) < EPS ) return 0;
        return a < 0 ? -1 : 1;
    }
    
    //三维叉积
    Point3 Cross3( Point3 u, Point3 v )
    {
        Point3 ret;
        ret.x = u.y * v.z - v.y * u.z;
        ret.y = u.z * v.x - u.x * v.z;
        ret.z = u.x * v.y - u.y * v.x;
        return ret;
    }
    
    //三维点积
    double Dot3( Point3 u, Point3 v )
    {
        return u.x * v.x + u.y * v.y + u.z * v.z;
    }
    
    //矢量差
    Point3 Subt( Point3 u, Point3 v )
    {
        Point3 ret;
        ret.x = u.x - v.x;
        ret.y = u.y - v.y;
        ret.z = u.z - v.z;
        return ret;
    }
    
    //取平面法向量
    Point3 NormalVector( plane3 s )
    {
        return Cross3( Subt( s.a, s.b ), Subt( s.b, s.c ) );
    }
    Point3 NormalVector( Point3 a, Point3 b, Point3 c )
    {
        return Cross3( Subt( a, b ), Subt( b, c ) );
    }
    
    //两点距离
    double TwoPointDistance( Point3 p1, Point3 p2 )
    {
        return sqrt( (p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y) + (p1.z - p2.z)*(p1.z - p2.z) );
    }
    
    //向量的模
    double VectorLenth( Point3 p )
    {
        return sqrt( p.x*p.x + p.y*p.y + p.z*p.z );
    }
    
    //空间直线距离,tmp为两直线的公共法向量
    double LineToLine( Line3 u, Line3 v, Point3& tmp )
    {
        tmp = Cross3( Subt( u.a, u.b ), Subt( v.a, v.b ) );
        return fabs( Dot3( Subt(u.a, v.a), tmp ) ) / VectorLenth(tmp);
    }
    
    //取平面法向量
    Point3 pvec( plane3 s )
    {
        return Cross3( Subt( s.a, s.b ), Subt( s.b, s.c ) );
    }
    
    //空间平面与直线的交点
    Point3 Intersection( Line3 l, plane3 s )
    {
        Point3 ret = pvec(s);
        double t = ( ret.x*(s.a.x-l.a.x)+ret.y*(s.a.y-l.a.y)+ret.z*(s.a.z-l.a.z) )/( ret.x*(l.b.x-l.a.x)+ret.y*(l.b.y-l.a.y)+ret.z*(l.b.z-l.a.z) );
        ret.x = l.a.x + ( l.b.x - l.a.x ) * t;
        ret.y = l.a.y + ( l.b.y - l.a.y ) * t;
        ret.z = l.a.z + ( l.b.z - l.a.z ) * t;
        return ret;
    }
  • 相关阅读:
    Java随笔
    Java随笔
    Java随笔
    CF1271D Portals(反悔贪心)
    CF938D Buy a Ticket(最短路)
    CF1117C Magic Ship(二分)
    HDU6820 Tree(树形dp)
    P2393 美味(主席树+贪心)
    HDU6831 Fragrant numbers(区间dp)
    HDU6832 A Very Easy Graph Problem(生成树)
  • 原文地址:https://www.cnblogs.com/GBRgbr/p/3217893.html
Copyright © 2020-2023  润新知