今天无聊拿起《编程之美》看了下,发现原来n&(n-1)还有很多妙用。原理:n与n-1的区别在于,对于n,从右向左数的第一个"1"开始一直到右,和n-1,完全相反
n&(n-1)作用:将n的二进制表示中的最低位为1的改为0,先看一个简单的例子:
n = 10100(二进制),则(n-1) = 10011 ==》n&(n-1) = 10000
可以看到原本最低位为1的那位变为0。
弄明白了n&(n-1)的作用,那它有哪些应用?
1. 求某一个数的二进制表示中1的个数
while (n >0 ) {
count ++;
n &= (n-1);
}
2. 判断一个数是否是2的方幂
n > 0 && ((n & (n - 1)) == 0 )
3. 计算N!的质因数2的个数。
容易得出N!质因数2的个数 = [N / 2] + [N / 4] + [N / 8] + ....
下面通过一个简单的例子来推导一下过程:N = 10101(二进制表示)
现在我们跟踪最高位的1,不考虑其他位假定为0,
则在
[N / 2] 01000
[N / 4] 00100
[N / 8] 00010
[N / 8] 00001
则所有相加等于01111 = 10000 - 1
由此推及其他位可得:(10101)!的质因数2的个数为10000 - 1 + 00100 - 1 + 00001 - 1 = 10101 - 3(二进制表示中1的个数)
推及一般N!的质因数2的个数为N - (N二进制表示中1的个数)
目前看到只有这些应用,但只要理解了n&(n-1)的原理及作用,在碰到相关问题时也会比较容易解决。