• 1963. 使字符串平衡的最小交换次数


    题目

    给你一个字符串 s ,下标从 0 开始 ,且长度为偶数 n 。字符串 恰好 由 n / 2 个开括号 '[' 和 n / 2 个闭括号 ']' 组成。

    只有能满足下述所有条件的字符串才能称为 平衡字符串 :

    字符串是一个空字符串,或者
    字符串可以记作 AB ,其中 A 和 B 都是 平衡字符串 ,或者
    字符串可以写成 [C] ,其中 C 是一个 平衡字符串 。
    你可以交换 任意 两个下标所对应的括号 任意 次数。

    返回使 s 变成 平衡字符串 所需要的 最小 交换次数。

    示例 1:

    输入:s = "][]["
    输出:1
    解释:交换下标 0 和下标 3 对应的括号,可以使字符串变成平衡字符串。
    最终字符串变成 "[[]]" 。

    示例 2:

    输入:s = "]]][[["
    输出:2
    解释:执行下述操作可以使字符串变成平衡字符串:

    • 交换下标 0 和下标 4 对应的括号,s = "[]][][" 。
    • 交换下标 1 和下标 5 对应的括号,s = "[[][]]" 。
      最终字符串变成 "[[][]]" 。

    示例 3:

    输入:s = "[]"
    输出:0
    解释:这个字符串已经是平衡字符串。

    提示:

    n == s.length
    2 <= n <= 106
    n 为偶数
    s[i] 为'[' 或 ']'
    开括号 '[' 的数目为 n / 2 ,闭括号 ']' 的数目也是 n / 2

    贪心算法(一):将需要交换的‘]’和最右侧的‘[’交换

    实际代码中,可以不用编写「交换」的逻辑,这是因为我们总是选择最右边的左括号,因此在后续的遍历中,若遇到了这些左括号,在交换后的字符串上,该位置及后面必然全部是右括号,即此时该字符串已经是平衡的了。

    因此,当遇到右括号并且此时 c=0c=0,可以直接将 cc 和答案加一,即视作将一个左括号和该右括号交换。由于没有实际交换括号,若后面又重新遇到了需要被交换的左括号,由于此时字符串已经是平衡的了,故不会对答案产生影响。

    为什么与最右侧的左括号交换呢?

    遍历字符串,遇到左括号cnt加一,遇到右括号减一,已知左括号和右括号数量相同,则只要在遍历过程中cnt不会小于0即可————这就要求左括号尽可能地早出现,而右括号尽可能地晚出现。不过要注意的是,']'和'['交换不意味着这个']'和这个'['配对。例如“]]][[[”,第一个右括号和最后一个左括号交换不意味着它们俩配对,交换之后得到“[]][[]”,可以看到它们分别和其它的一个右括号和左括号配对。

    为什么这种方法能够保证最小的交换次数?

    只遍历一次,遇到需要交换的地方才交换。

       public int minSwaps(String s) {
            //ans为交换次数
            int ans=0,cnt=0;
            for(int i=0;i<s.length();++i){
                if(s.charAt(i)=='[') cnt++;
                //当前字符为']'但前面没有多余的'['与之匹配,此时需要一次交换
                else if(cnt==0){
                    ans++;
                    //交换之后该位置变成了'[',cnt需要加一
                    cnt++;
                }
                else cnt--;
            }
            return ans;
        }
    

    贪心算法(二):(没配对的对数+1)/2即为最少交换次数

    这种方法的关键在于需要看出来,未配对的情形一定是这种类型的:]]][[[,即未配对的右括号全部在未配对的左括号的左侧。为什么呢?因为未配对的右括号前面肯定不能出现未配对的左括号*,否则它们就配对了。

       public int minSwaps(String s) {
            /**
            cnt1用于抵消可以匹配的左右括号
            cnt2记录没匹配的对数,当前面没有多余的左括号且当前位置是右括号时有一对无法匹配,cnt2++;
             */
            int cnt1=0,cnt2=0;
            for(int i=0;i<s.length();++i){
                if(s.charAt(i)=='[') cnt1++;
                //cnt1不需要减一
                else if(cnt1==0) cnt2++;
                else cnt1--;
            }
            //若未匹配的对数是偶数,每一次交换可以实现两对成功配对
            //若未匹配的对数是奇数,最后一次交换的左右括号相互配对,只有一对成功配对
            return (cnt2+1)/2;
        }
    

    来源:力扣(LeetCode)
    链接:https://leetcode-cn.com/problems/minimum-number-of-swaps-to-make-the-string-balanced
    参考:https://leetcode-cn.com/problems/minimum-number-of-swaps-to-make-the-string-balanced/solution/go-tan-xin-by-endlesscheng-7h9n/

  • 相关阅读:
    PHP正则表达式入门教程[转]
    微信公众平台消息接口开发(6)电话号码链接与网址链接
    微信公众平台消息接口开发(7)快递查询
    server后台程序的内存使用问题
    支持向量机(SVM)(三)-- 最优间隔分类器(optimal margin classifier)
    NYOJ-451-光棍节的快乐
    为什么我们想法非常多,付诸行动的却非常少?
    ios两视图间托付(delegate)传值
    Kettle变量和自己定义java代码的实例应用
    測试Service
  • 原文地址:https://www.cnblogs.com/Frank-Hong/p/15318427.html
Copyright © 2020-2023  润新知