• Tensorflow机器学习入门——网络可视化TensorBoard


    一、在代码中标记要显示的各种量

    tensorboard各函数的作用和用法请参考:https://www.cnblogs.com/lyc-seu/p/8647792.html

    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    import os
    #设置当前工作目录
    os.chdir(r'H:NotepadTensorflow')
    
    def add_layer(inputs, in_size, out_size, n_layer, activation_function=None):
        layer_name = 'layer%s' % n_layer
        with tf.name_scope(layer_name):
        
            Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W')
            biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')
            Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
            if activation_function is None:
                outputs = Wx_plus_b
            else:
                outputs = activation_function(Wx_plus_b, )
                
        #histogram用来显示训练过程中变量的分布情况        
        tf.summary.histogram(layer_name + '/weights', Weights)
        tf.summary.histogram(layer_name + '/biases', biases)
        tf.summary.histogram(layer_name + '/outputs', outputs)
            
        return outputs
        
    #数据   
    x_data = np.linspace(-1,1,300)[:, np.newaxis]
    noise = np.random.normal(0, 0.05, x_data.shape)
    y_data = 5*np.square(x_data) - 0.5 + noise
    
    #输入
    with tf.name_scope('inputs'):
        xs = tf.placeholder(tf.float32, [None, 1], name='x_input')
        ys = tf.placeholder(tf.float32, [None, 1], name='y_input')
    
    #3层网络
    l1 = add_layer(xs, 1, 10, 1,activation_function=tf.nn.relu)
    l2 = add_layer(l1, 10, 10,2, activation_function=tf.nn.relu)
    prediction = add_layer(l2, 10, 1,3, activation_function=None)
    
    #损失与训练
    with tf.name_scope('loss'):
        loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
                                            reduction_indices=[1]))
        tf.summary.scalar('loss-haha', loss)
    with tf.name_scope('train'):
        train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    
    #运行    
    init = tf.global_variables_initializer()
    #merge_all 可以将所有summary全部保存到磁盘,以便tensorboard显示。
    merged = tf.summary.merge_all()
    with tf.Session() as sess:
        sess.run(init)
      #FileWriter指定一个文件用来保存图。可以调用其add_summary()方法将训练过程数据保存在filewriter指定的文件中 writer = tf.summary.FileWriter("logs/", sess.graph)#输出Graph for i in range(10000): sess.run(train_step, feed_dict={xs: x_data, ys: y_data}) if i % 50 == 0: result = sess.run(merged,feed_dict={xs: x_data, ys: y_data}) writer.add_summary(result, i)

    二、在log文件夹所在目录打开cmd,并输入‘     tensorboard --logdir=logs     ’ 

     三、在Google Chrome浏览器中输入cmd中给出的网址: http://Fengqiao_x:6006

  • 相关阅读:
    使用redis 的订阅服务
    vue 的provide 和 inject
    yolov4检测识别不出目标的问题
    jetson nano 安装anaconda和pytorch(转)
    winform 程序退出时强制关闭所有线程
    jetson nano ubuntu18.04 ros1和ros2安装大象机械手mycobot系列 的ROS 包
    PHP SSE 服务器推送消息给浏览器 PHP
    vue vuetemplatecompiler版本不一致的问题
    Convert gif to Base64 String Using JavaScript
    vue uniapp 使用 fontawesome 打包Android 图片svg 不显示解决方案
  • 原文地址:https://www.cnblogs.com/Fengqiao/p/tensorboard.html
Copyright © 2020-2023  润新知