• POJ 2981 Strange Way to Express Integers 模线性方程组


    http://poj.org/problem?id=2891

    结果看了半天还是没懂那个模的含义...懂了我再补充...

    其他的思路都在注释里

    /********************* Template ************************/
    #include <set>
    #include <map>
    #include <list>
    #include <cmath>
    #include <ctime>
    #include <deque>
    #include <queue>
    #include <stack>
    #include <bitset>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <cassert>
    #include <cstdlib>
    #include <cstring>
    #include <sstream>
    #include <fstream>
    #include <numeric>
    #include <iomanip>
    #include <iostream>
    #include <algorithm>
    #include <functional>
    using namespace std;
    
    #define EPS         1e-8
    #define MAXN        (int)1e5+100
    #define MOD         (int)1e9+7
    #define PI          acos(-1.0)
    #define LINF        ((1LL)<<50)
    #define INF            (1<<30);
    #define max(a,b)    ((a) > (b) ? (a) : (b))
    #define min(a,b)    ((a) < (b) ? (a) : (b))
    #define max3(a,b,c) (max(max(a,b),c))
    #define min3(a,b,c) (min(min(a,b),c))
    #define BUG         cout<<"BUG! "<<endl
    #define LINE        cout<<"--------------"<<endl
    #define L(t)        (t << 1)
    #define R(t)        (t << 1 | 1)
    #define Mid(a,b)    ((a + b) >> 1)
    #define lowbit(a)   (a & -a)
    #define FIN            freopen("in.txt","r",stdin)
    #define FOUT        freopen("out.txt","w",stdout)
    #pragma comment     (linker,"/STACK:102400000,102400000")
    
    typedef long long LL;
    // typedef unsigned long long ULL;
    // typedef __int64 LL;
    // typedef unisigned __int64 ULL;
    LL gcd(LL a,LL b){ return b?gcd(b,a%b):a; }
    LL lcm(LL a,LL b){ return a/gcd(a,b)*b; }
    
    /*********************   F   ************************/
    
    LL a[MAXN],r[MAXN];
    bool flag;
    
    pair<LL,LL> ex_gcd(LL a,LL b){
        if(b == 0) return make_pair(1,0);
        pair<LL,LL> t = ex_gcd(b,a%b);
        return make_pair(t.second , t.first - (a / b) * t.second);
    }
    
    LL work(int n){
        LL a0 = a[0],r0 = r[0];
        LL tmp,agcd,pr;
        for(int i = 1 ; i < n ; i++){
            pair<LL,LL> p = ex_gcd(a0,a[i]);
            agcd = gcd(a0,a[i]);
            pr = r[i] - r0;
            if(pr % agcd) {             // pr%agcd==0 保证有解
                flag = true;
                return 0;
            }
            // 不明这个模的意义,本来是要%a[i]的现在 放大了(pr/agcd)倍,估计是/pr求逆元的思想吧 
            tmp = a[i] / agcd;     
            //还原方程 : p.first*a0≡pr(mod a[i])
            p.first = (pr / agcd * p.first % tmp + tmp) % tmp;
            r0 = r0 + a0 * p.first;     // 满足两个方程最小整数
            a0 = a0 / agcd * a[i] ;     // a0=LCM(a0,a[i]) 保证解的最小...具体为什么本弱说不清
        }
        return r0;
    }
    int main()
    {
        //FIN;
        //FOUT
        int n;
        while(cin>>n){
            flag = false;
            for(int i = 0 ; i < n ; i++)
                cin>>a[i]>>r[i];
            LL ans = work(n);
            if(flag) cout<<"-1"<<endl;
            else cout<<ans<<endl;
        }
        return 0;
    }
  • 相关阅读:
    答题卡
    hdu 5451 Best Solver
    L. Poor God Water(ACM-ICPC 2018 焦作赛区网络预赛)
    MicroRNA Ranking(Tehran2016)
    Split The Tree(2018东北四省赛)
    Django项目基础开发流程
    暑假学习进度记录墙
    抖音字体设置
    十大危险cmd指令
    奶牛的聚会
  • 原文地址:https://www.cnblogs.com/Felix-F/p/3269078.html
Copyright © 2020-2023  润新知