• Formelsammlung Mathematik: Bestimmte Integrale: Form R(x,log,cos)


    0.1Bearbeiten
    {displaystyle int _{0}^{pi }log left(cos {frac {x}{2}} ight)\,dx=-pi log 2}{displaystyle int _{0}^{pi }log left(cos {frac {x}{2}}
ight)\,dx=-pi log 2}
     
    0.2Bearbeiten
    {displaystyle int _{0}^{frac {pi }{2}}log left(cos {frac {x}{2}} ight)\,dx=G-{frac {pi }{2}}log 2}{displaystyle int _{0}^{frac {pi }{2}}log left(cos {frac {x}{2}}
ight)\,dx=G-{frac {pi }{2}}log 2}
     
    0.3Bearbeiten
    {displaystyle int _{0}^{pi }x^{2}\,log ^{2}left(2cos {frac {x}{2}} ight)\,dx={frac {11pi ^{5}}{180}}}{displaystyle int _{0}^{pi }x^{2}\,log ^{2}left(2cos {frac {x}{2}}
ight)\,dx={frac {11pi ^{5}}{180}}}
     
    0.4Bearbeiten
    {displaystyle int _{0}^{frac {pi }{2}}{frac {x^{2}}{x^{2}+log ^{2}(2cos x)}}\,dx={frac {pi }{8}}left(1-gamma +log 2pi ight)}{displaystyle int _{0}^{frac {pi }{2}}{frac {x^{2}}{x^{2}+log ^{2}(2cos x)}}\,dx={frac {pi }{8}}left(1-gamma +log 2pi 
ight)}
     
    1.1Bearbeiten
    {displaystyle int _{0}^{pi }log left(1-2alpha cos x+alpha ^{2} ight)dx=left{{egin{matrix}0&|alpha |leq 1\\2pi log |alpha |&|alpha |>1end{matrix}} ight.qquad ,qquad alpha in mathbb {R} }{displaystyle int _{0}^{pi }log left(1-2alpha cos x+alpha ^{2}
ight)dx=left{{egin{matrix}0&|alpha |leq 1\\2pi log |alpha |&|alpha |>1end{matrix}}
ight.qquad ,qquad alpha in mathbb {R} }
  • 相关阅读:
    DML 语句
    sql分组和聚集
    mysql 子查询 EXISTS
    tomcat设置字符集解决乱码问题
    eclipse 自动下载源码 ;eclipse 上截图
    数据库连接池
    谷歌搜索屏蔽敏感词汇
    JS实现跨域cookie、js实现跨域攻击
    大数据面试题型
    eclipse中一些常用快捷键,与用vs.net软件进行c#编程时进行相同的快捷键的设置
  • 原文地址:https://www.cnblogs.com/Eufisky/p/14730817.html
Copyright © 2020-2023  润新知