• Formelsammlung Mathematik: Bestimmte Integrale: Form R(x,Gamma)


    3.1Bearbeiten
    {displaystyle int _{-infty }^{infty }(alpha -ix)^{n}\,Gamma (eta +ix)\,dx={frac {2pi }{e}}sum _{k=0}^{n}{n choose k}\,(alpha +eta )^{k}\,phi _{n-k}(-1)}{displaystyle int _{-infty }^{infty }(alpha -ix)^{n}\,Gamma (eta +ix)\,dx={frac {2pi }{e}}sum _{k=0}^{n}{n choose k}\,(alpha +eta )^{k}\,phi _{n-k}(-1)}
    ohne Beweis
     
    4.1Bearbeiten
    {displaystyle {frac {1}{2pi i}}int _{-iinfty }^{iinfty }{frac {Gamma (alpha _{1}+x)}{eta _{1}^{alpha _{1}+x}}}\,{frac {Gamma (alpha _{2}-x)}{eta _{2}^{alpha _{2}-x}}}\,dx={frac {Gamma (alpha _{1}+alpha _{2})}{(eta _{1}+eta _{2})^{alpha _{1}+alpha _{2}}}}qquad { ext{Re}}(alpha _{1}),{ ext{Re}}(alpha _{2}),{ ext{Re}}(eta _{1}),{ ext{Re}}(eta _{2})>0}{displaystyle {frac {1}{2pi i}}int _{-iinfty }^{iinfty }{frac {Gamma (alpha _{1}+x)}{eta _{1}^{alpha _{1}+x}}}\,{frac {Gamma (alpha _{2}-x)}{eta _{2}^{alpha _{2}-x}}}\,dx={frac {Gamma (alpha _{1}+alpha _{2})}{(eta _{1}+eta _{2})^{alpha _{1}+alpha _{2}}}}qquad {	ext{Re}}(alpha _{1}),{	ext{Re}}(alpha _{2}),{	ext{Re}}(eta _{1}),{	ext{Re}}(eta _{2})>0}
    Beweis (Additionstheorem für die Gammafunktion)
    Gammafaltung.PNG

    Für {displaystyle k=1,2\,}{displaystyle k=1,2\,} sei {displaystyle u_{k}(t)={frac {Gamma (alpha _{k}+it)}{eta _{k}^{alpha _{k}+it}}}}{displaystyle u_{k}(t)={frac {Gamma (alpha _{k}+it)}{eta _{k}^{alpha _{k}+it}}}} und {displaystyle f_{k}(z)={frac {Gamma (z)}{(eta _{k}\,e^{omega })^{z}}}}{displaystyle f_{k}(z)={frac {Gamma (z)}{(eta _{k}\,e^{omega })^{z}}}} mit {displaystyle omega in mathbb {R} }{displaystyle omega in mathbb {R} }.

    Berechne die Fouriertransformierte {displaystyle {mathcal {F}}[u_{k}](omega )=int _{-infty }^{infty }{frac {Gamma (alpha _{k}+it)}{eta _{k}^{alpha _{k}+it}}}\,e^{-iomega t}\,dt}{displaystyle {mathcal {F}}[u_{k}](omega )=int _{-infty }^{infty }{frac {Gamma (alpha _{k}+it)}{eta _{k}^{alpha _{k}+it}}}\,e^{-iomega t}\,dt}

    {displaystyle =-i\,e^{omega alpha _{k}}int _{-infty }^{infty }{frac {Gamma (alpha _{k}+it)}{(eta _{k}\,e^{omega })^{alpha _{k}+it}}}\,i\,dt=-i\,e^{omega alpha _{k}}int _{alpha _{k}+imathbb {R} }f_{k}\,dz}{displaystyle =-i\,e^{omega alpha _{k}}int _{-infty }^{infty }{frac {Gamma (alpha _{k}+it)}{(eta _{k}\,e^{omega })^{alpha _{k}+it}}}\,i\,dt=-i\,e^{omega alpha _{k}}int _{alpha _{k}+imathbb {R} }f_{k}\,dz}

    {displaystyle =-i\,e^{omega alpha _{k}}\,lim _{N o infty }oint _{gamma _{N}}f_{k}\,dz=2pi \,e^{omega alpha _{k}}\,sum _{n=0}^{infty }{ ext{res}}(f_{k},-n)}{displaystyle =-i\,e^{omega alpha _{k}}\,lim _{N	o infty }oint _{gamma _{N}}f_{k}\,dz=2pi \,e^{omega alpha _{k}}\,sum _{n=0}^{infty }{	ext{res}}(f_{k},-n)}

    {displaystyle =2pi \,e^{omega alpha _{k}}\,sum _{n=0}^{infty }{frac {(-1)^{n}}{n!}}\,left(eta _{k}\,e^{omega } ight)^{n}=2pi \,{frac {e^{omega alpha _{k}}}{e^{eta _{k}\,e^{omega }}}}}{displaystyle =2pi \,e^{omega alpha _{k}}\,sum _{n=0}^{infty }{frac {(-1)^{n}}{n!}}\,left(eta _{k}\,e^{omega }
ight)^{n}=2pi \,{frac {e^{omega alpha _{k}}}{e^{eta _{k}\,e^{omega }}}}}.

    Also ist

    {displaystyle int _{-infty }^{infty }{frac {Gamma (alpha _{1}-it)}{eta _{1}^{alpha _{1}-it}}}\,{frac {Gamma (alpha _{2}+it)}{eta _{2}^{alpha _{2}+it}}}\,dt=int _{-infty }^{infty }u_{1}(0-t)\,u_{2}(t)\,dt=(u_{1}*u_{2})(0)}{displaystyle int _{-infty }^{infty }{frac {Gamma (alpha _{1}-it)}{eta _{1}^{alpha _{1}-it}}}\,{frac {Gamma (alpha _{2}+it)}{eta _{2}^{alpha _{2}+it}}}\,dt=int _{-infty }^{infty }u_{1}(0-t)\,u_{2}(t)\,dt=(u_{1}*u_{2})(0)}

    nach der Faltungsformel {displaystyle {frac {1}{2pi }}int _{-infty }^{infty }{mathcal {F}}[u_{1}](omega )cdot {mathcal {F}}[u_{2}](omega )\,domega =2pi int _{-infty }^{infty }{frac {e^{omega alpha _{1}}}{e^{eta _{1}e^{omega }}}}\,{frac {e^{omega alpha _{2}}}{e^{eta _{2}e^{omega }}}}\,domega }{displaystyle {frac {1}{2pi }}int _{-infty }^{infty }{mathcal {F}}[u_{1}](omega )cdot {mathcal {F}}[u_{2}](omega )\,domega =2pi int _{-infty }^{infty }{frac {e^{omega alpha _{1}}}{e^{eta _{1}e^{omega }}}}\,{frac {e^{omega alpha _{2}}}{e^{eta _{2}e^{omega }}}}\,domega }.

    Und das ist nach Substitution {displaystyle e^{omega }=t\,}{displaystyle e^{omega }=t\,} gleich {displaystyle 2pi int _{0}^{infty }{frac {t^{alpha _{1}}}{e^{eta _{1}t}}}\,{frac {t^{alpha _{2}}}{e^{eta _{2}t}}}\,{frac {dt}{t}}=2pi int _{0}^{infty }t^{alpha _{1}+alpha _{2}-1}\,e^{-(eta _{1}+eta _{2})t}\,dt=2pi {frac {Gamma (alpha _{1}+alpha _{2})}{(eta _{1}+eta _{2})^{alpha _{1}+alpha _{2}}}}}{displaystyle 2pi int _{0}^{infty }{frac {t^{alpha _{1}}}{e^{eta _{1}t}}}\,{frac {t^{alpha _{2}}}{e^{eta _{2}t}}}\,{frac {dt}{t}}=2pi int _{0}^{infty }t^{alpha _{1}+alpha _{2}-1}\,e^{-(eta _{1}+eta _{2})t}\,dt=2pi {frac {Gamma (alpha _{1}+alpha _{2})}{(eta _{1}+eta _{2})^{alpha _{1}+alpha _{2}}}}}.

     
    4.2Bearbeiten
    {displaystyle {frac {1}{2pi i}}int _{-iinfty }^{iinfty }{frac {Gamma (a+x)\,Gamma (b-x)}{Gamma (c+x)\,Gamma (d-x)}}\,dx={frac {Gamma (a+b)\,Gamma (c+d-a-b-1)}{Gamma (c+d-1)\,Gamma (c-a)\,Gamma (d-b)}}}{displaystyle {frac {1}{2pi i}}int _{-iinfty }^{iinfty }{frac {Gamma (a+x)\,Gamma (b-x)}{Gamma (c+x)\,Gamma (d-x)}}\,dx={frac {Gamma (a+b)\,Gamma (c+d-a-b-1)}{Gamma (c+d-1)\,Gamma (c-a)\,Gamma (d-b)}}}
    ohne Beweis
     
    4.3Bearbeiten
    Sind {displaystyle a,b,c,d\,}{displaystyle a,b,c,d\,} komplexe Zahlen und ist {displaystyle gamma \,}{displaystyle gamma \,} eine Kurve, welche die Polstellen
    {displaystyle (-a-n)_{ngeq 0}}{displaystyle (-a-n)_{ngeq 0}} und {displaystyle (-b-n)_{ngeq 0}}{displaystyle (-b-n)_{ngeq 0}} von den Polstellen {displaystyle (c-n)_{ngeq 0}}{displaystyle (c-n)_{ngeq 0}} und {displaystyle (b-n)_{ngeq 0}}{displaystyle (b-n)_{ngeq 0}} trennt, so gilt
    {displaystyle {frac {1}{2pi i}}int _{gamma }Gamma (a+z)\,Gamma (b+z)\,Gamma (c-z)\,Gamma (d-z)\,dz={frac {Gamma (a+c)\,Gamma (a+d)\,Gamma (b+c)\,Gamma (b+d)}{Gamma (a+b+c+d)}}}{displaystyle {frac {1}{2pi i}}int _{gamma }Gamma (a+z)\,Gamma (b+z)\,Gamma (c-z)\,Gamma (d-z)\,dz={frac {Gamma (a+c)\,Gamma (a+d)\,Gamma (b+c)\,Gamma (b+d)}{Gamma (a+b+c+d)}}}
    ohne Beweis (Lemma von Barnes)
     
    4.4Bearbeiten
    {displaystyle int _{-infty }^{infty }{frac {dx}{Gamma (a+x)\,Gamma (b+x)\,Gamma (c-x)\,Gamma (d-x)}}={frac {Gamma (a+b+c+d-3)}{Gamma (a+c-1)\,Gamma (a+d-1)\,Gamma (b+c-1)\,Gamma (b+d-1)}}qquad { ext{Re}}(a+b+c+d)>3}{displaystyle int _{-infty }^{infty }{frac {dx}{Gamma (a+x)\,Gamma (b+x)\,Gamma (c-x)\,Gamma (d-x)}}={frac {Gamma (a+b+c+d-3)}{Gamma (a+c-1)\,Gamma (a+d-1)\,Gamma (b+c-1)\,Gamma (b+d-1)}}qquad {	ext{Re}}(a+b+c+d)>3}
    ohne Beweis (Ramanujans Beta Integral)
  • 相关阅读:
    springboot嵌入式servlet容器的自动配置以及原理
    简单认识springboot的错误处理机制
    使用springboot来编写web项目的一些实现
    spring-cloud-starter-openfeign 源码详细讲解
    简述application.properties和application.yml 以及 @ConfigurationProperties 和@PropertySource @Value 和@ImportResource的用法,区别
    Ribbon源码分析(二)-- 服务列表的获取和负载均衡算法分析
    git的详细使用,项目创建到同步远程仓库,版本回退,忽略文件,分支创建,分支合并,分支名称修改,冲突解决,项目迁移
    Ribbon源码分析(一)-- RestTemplate 以及自定义负载均衡算法
    eureka源码--服务的注册、服务续约、服务发现、服务下线、服务剔除、定时任务以及自定义注册中心的思路
    eureka集群的搭建
  • 原文地址:https://www.cnblogs.com/Eufisky/p/14730804.html
Copyright © 2020-2023  润新知