• Formelsammlung Mathematik: Bestimmte Integrale: Form R(x,tan)


    0.1Bearbeiten
    {displaystyle int _{0}^{pi }x\, an x\,dx=-pi \,log 2}{displaystyle int _{0}^{pi }x\,	an x\,dx=-pi \,log 2}
    Beweis

    Integrationsweg5.png
    Setzt man {displaystyle f(z)=z\, an z}{displaystyle f(z)=z\,	an z}, so ist

    {displaystyle int _{C_{varepsilon }}f\,dz+int _{K_{varepsilon }}f\,dz+int _{D_{varepsilon }}f\,dz+int _{gamma _{N}}f\,dz+int _{sigma _{N}}f\,dz+int _{delta _{N}}f\,dz=oint f\,dz=0}{displaystyle int _{C_{varepsilon }}f\,dz+int _{K_{varepsilon }}f\,dz+int _{D_{varepsilon }}f\,dz+int _{gamma _{N}}f\,dz+int _{sigma _{N}}f\,dz+int _{delta _{N}}f\,dz=oint f\,dz=0}.

    Nun ist {displaystyle lim _{varepsilon o 0+}int _{C_{varepsilon }}f\,dz+int _{D_{varepsilon }}f\,dz={ ext{p.V.}}int _{0}^{pi }x\, an x\,dx}{displaystyle lim _{varepsilon 	o 0+}int _{C_{varepsilon }}f\,dz+int _{D_{varepsilon }}f\,dz={	ext{p.V.}}int _{0}^{pi }x\,	an x\,dx}

    und {displaystyle lim _{varepsilon o 0+}int _{K_{varepsilon }}f\,dz=-ipi \,{ ext{res}}left(f,{frac {pi }{2}} ight)={frac {ipi ^{2}}{2}}}{displaystyle lim _{varepsilon 	o 0+}int _{K_{varepsilon }}f\,dz=-ipi \,{	ext{res}}left(f,{frac {pi }{2}}
ight)={frac {ipi ^{2}}{2}}}.

    Und aus {displaystyle int _{gamma _{N}}f\,dz+int _{delta _{N}}f\,dz=int _{0}^{N}f(pi +iy)\,i\,dy-int _{0}^{N}f(iy)\,i\,dy=-pi int _{0}^{N} anh y\,dy=-pi log(cosh N)}{displaystyle int _{gamma _{N}}f\,dz+int _{delta _{N}}f\,dz=int _{0}^{N}f(pi +iy)\,i\,dy-int _{0}^{N}f(iy)\,i\,dy=-pi int _{0}^{N}	anh y\,dy=-pi log(cosh N)}

    und {displaystyle int _{sigma _{N}}f\,dz=-int _{0}^{pi }f(x+iN)\,dx=pi log(2cosh N)-{frac {ipi ^{2}}{2}}}{displaystyle int _{sigma _{N}}f\,dz=-int _{0}^{pi }f(x+iN)\,dx=pi log(2cosh N)-{frac {ipi ^{2}}{2}}}

    folgt {displaystyle int _{gamma _{N}}f\,dz+int _{sigma _{N}}f\,dz+int _{delta _{N}}f\,dz=pi log 2-{frac {ipi ^{2}}{2}}}{displaystyle int _{gamma _{N}}f\,dz+int _{sigma _{N}}f\,dz+int _{delta _{N}}f\,dz=pi log 2-{frac {ipi ^{2}}{2}}}.

    Also ist {displaystyle { ext{p.V.}}int _{0}^{pi }x\, an x\,dx+pi log 2=0}{displaystyle {	ext{p.V.}}int _{0}^{pi }x\,	an x\,dx+pi log 2=0}.

     
    0.2Bearbeiten
    {displaystyle int _{0}^{frac {pi }{4}}log(1+ an x)\,dx={frac {pi }{8}}log 2}{displaystyle int _{0}^{frac {pi }{4}}log(1+	an x)\,dx={frac {pi }{8}}log 2}
    Beweis

    Wegen {displaystyle 1+ an x={frac {cos x+sin x}{cos x}}={frac {{sqrt {2}}cos left({frac {pi }{4}}-x ight)}{cos x}}}{displaystyle 1+	an x={frac {cos x+sin x}{cos x}}={frac {{sqrt {2}}cos left({frac {pi }{4}}-x
ight)}{cos x}}}

    ist {displaystyle log(1+ an x)={frac {1}{2}}log 2+log cos left({frac {pi }{4}}-x ight)-log(cos x)}{displaystyle log(1+	an x)={frac {1}{2}}log 2+log cos left({frac {pi }{4}}-x
ight)-log(cos x)}.

    Da nach Substitution {displaystyle xmapsto {frac {pi }{4}}-x}{displaystyle xmapsto {frac {pi }{4}}-x}

    {displaystyle int _{0}^{frac {pi }{4}}log cos left({frac {pi }{4}}-x ight)\,dx=int _{0}^{frac {pi }{4}}log(cos x)\,dx}{displaystyle int _{0}^{frac {pi }{4}}log cos left({frac {pi }{4}}-x
ight)\,dx=int _{0}^{frac {pi }{4}}log(cos x)\,dx} ist,

    ist das gesuchte Integral {displaystyle int _{0}^{frac {pi }{4}}{frac {1}{2}}log 2\,dx={frac {pi }{8}}\,log 2}{displaystyle int _{0}^{frac {pi }{4}}{frac {1}{2}}log 2\,dx={frac {pi }{8}}\,log 2} .

     
    1.1Bearbeiten
    {displaystyle int _{-infty }^{infty }{frac { an alpha x}{x}}\,dx=pi qquad alpha >0}{displaystyle int _{-infty }^{infty }{frac {	an alpha x}{x}}\,dx=pi qquad alpha >0}
    Beweis

    Nach der Formel von Lobatschewski ist {displaystyle int _{-infty }^{infty }1cdot {frac { an x}{x}}\,dx=int _{0}^{pi }1\,dx=pi }{displaystyle int _{-infty }^{infty }1cdot {frac {	an x}{x}}\,dx=int _{0}^{pi }1\,dx=pi }.

    Substituiert man {displaystyle x o alpha x\,}{displaystyle x	o alpha x\,}, so erhält man die behauptete Formel.

     
    1.2Bearbeiten
    {displaystyle int _{0}^{frac {pi }{2}}{frac {1}{1+ an ^{alpha }x}}\,dx={frac {pi }{4}}qquad alpha in mathbb {C} setminus imathbb {R} ^{ imes }}{displaystyle int _{0}^{frac {pi }{2}}{frac {1}{1+	an ^{alpha }x}}\,dx={frac {pi }{4}}qquad alpha in mathbb {C} setminus imathbb {R} ^{	imes }}
    Beweis

    Für {displaystyle alpha in mathbb {C} setminus imathbb {R} ^{ imes }}{displaystyle alpha in mathbb {C} setminus imathbb {R} ^{	imes }} sei {displaystyle I(alpha )=int _{0}^{frac {pi }{2}}{frac {1}{1+ an ^{alpha }x}}\,dx}{displaystyle I(alpha )=int _{0}^{frac {pi }{2}}{frac {1}{1+	an ^{alpha }x}}\,dx}.

    Nach Substitution {displaystyle xmapsto {frac {pi }{2}}-x}{displaystyle xmapsto {frac {pi }{2}}-x} ist {displaystyle I(alpha )=int _{0}^{frac {pi }{2}}{frac {1}{1+cot ^{alpha }x}}\,dx=int _{0}^{frac {pi }{2}}{frac { an ^{alpha }x}{1+ an ^{alpha }x}}\,dx}{displaystyle I(alpha )=int _{0}^{frac {pi }{2}}{frac {1}{1+cot ^{alpha }x}}\,dx=int _{0}^{frac {pi }{2}}{frac {	an ^{alpha }x}{1+	an ^{alpha }x}}\,dx}.

    Addiert man die verschiedenen Darstellungen von {displaystyle I(alpha )\,}{displaystyle I(alpha )\,}, so ist {displaystyle 2I(alpha )=int _{0}^{frac {pi }{2}}{frac {1+ an ^{alpha }x}{1+ an ^{alpha }x}}\,dx={frac {pi }{2}}}{displaystyle 2I(alpha )=int _{0}^{frac {pi }{2}}{frac {1+	an ^{alpha }x}{1+	an ^{alpha }x}}\,dx={frac {pi }{2}}}.

    Unabhängig von {displaystyle alpha \,}alpha\, gilt also {displaystyle I(alpha )={frac {pi }{4}}}{displaystyle I(alpha )={frac {pi }{4}}}.

     
    1.3Bearbeiten
    {displaystyle int _{0}^{frac {pi }{2}} an ^{2alpha -1}\,x;dx={frac {pi }{2sin alpha pi }}qquad 0<{ ext{Re}}(alpha )<1}{displaystyle int _{0}^{frac {pi }{2}}	an ^{2alpha -1}\,x;dx={frac {pi }{2sin alpha pi }}qquad 0<{	ext{Re}}(alpha )<1}
    Beweis

    Verwende die Formel

    {displaystyle 2int _{0}^{frac {pi }{2}}sin ^{2alpha -1}x\,cos ^{2eta -1}x\,dx={frac {Gamma (alpha )\,Gamma (eta )}{Gamma (alpha +eta )}}qquad { ext{Re}}(alpha ),{ ext{Re}}(eta )>0}{displaystyle 2int _{0}^{frac {pi }{2}}sin ^{2alpha -1}x\,cos ^{2eta -1}x\,dx={frac {Gamma (alpha )\,Gamma (eta )}{Gamma (alpha +eta )}}qquad {	ext{Re}}(alpha ),{	ext{Re}}(eta )>0}.

    Ist {displaystyle 0<{ ext{Re}}(alpha )<1\,}{displaystyle 0<{	ext{Re}}(alpha )<1\,} und setzt man {displaystyle eta =1-alpha \,}{displaystyle eta =1-alpha \,}, so ist auch {displaystyle 0<{ ext{Re}}(eta )<1\,}{displaystyle 0<{	ext{Re}}(eta )<1\,}.

    Also ist {displaystyle 2int _{0}^{frac {pi }{2}} an ^{2alpha -1}x;dx=Gamma (alpha )\,Gamma (1-alpha )}{displaystyle 2int _{0}^{frac {pi }{2}}	an ^{2alpha -1}x;dx=Gamma (alpha )\,Gamma (1-alpha )}.

    Und das ist {displaystyle {frac {pi }{sin alpha pi }}}{displaystyle {frac {pi }{sin alpha pi }}} nach dem Eulerschen Ergänzungssatz.

  • 相关阅读:
    idea中代码提交流程(git版)
    《如何做好软件设计》:设计原则
    用基础Array数组实现动态数组、链表、栈和队列
    使用Redis+SpringBoot实现定时任务测试
    分布式锁的三种实现方式
    RabbitMQ镜像队列集群搭建、与SpringBoot整合
    RabbitMQ简介、安装、基本特性API--Java测试
    分布式文件系统FastDFS简介、搭建、与SpringBoot整合实现图片上传
    Elasticsearch--Logstash定时同步MySQL数据到Elasticsearch
    Elasticsearch 分片集群原理、搭建、与SpringBoot整合
  • 原文地址:https://www.cnblogs.com/Eufisky/p/14730796.html
Copyright © 2020-2023  润新知