统计日志文件中各访问状态的个数.
1.将日志数据上传到hdfs
路径 /mapreduce/data/apachelog/in 中
内容如下
0:0:0:0:0:0:0:1 - - [15/Feb/2017:16:24:16 +0800] "GET / HTTP/1.1" 200 11452 0:0:0:0:0:0:0:1 - - [15/Feb/2017:16:24:16 +0800] "GET /tomcat.css HTTP/1.1" 200 5926 0:0:0:0:0:0:0:1 - - [15/Feb/2017:16:24:16 +0800] "GET /tomcat.png HTTP/1.1" 200 5103 0:0:0:0:0:0:0:1 - - [15/Feb/2017:16:24:16 +0800] "GET /bg-nav.png HTTP/1.1" 200 1401 0:0:0:0:0:0:0:1 - - [15/Feb/2017:16:24:16 +0800] "GET /asf-logo.png HTTP/1.1" 200 17811 0:0:0:0:0:0:0:1 - - [15/Feb/2017:16:24:16 +0800] "GET /bg-upper.png HTTP/1.1" 200 3103 0:0:0:0:0:0:0:1 - - [15/Feb/2017:16:24:16 +0800] "GET /bg-button.png HTTP/1.1" 200 713 0:0:0:0:0:0:0:1 - - [15/Feb/2017:16:24:16 +0800] "GET /bg-middle.png HTTP/1.1" 200 1918 127.0.0.1 - - [15/Feb/2017:16:25:53 +0800] "GET / HTTP/1.1" 404 994 127.0.0.1 - - [15/Feb/2017:16:25:53 +0800] "GET / HTTP/1.1" 404 994 0:0:0:0:0:0:0:1 - - [15/Feb/2017:16:25:53 +0800] "GET / HTTP/1.1" 404 994 0:0:0:0:0:0:0:1 - - [15/Feb/2017:16:28:39 +0800] "GET / HTTP/1.1" 404 994 127.0.0.1 - - [15/Feb/2017:16:30:32 +0800] "GET / HTTP/1.1" 404 994 127.0.0.1 - - [15/Feb/2017:16:30:32 +0800] "GET / HTTP/1.1" 404 994 0:0:0:0:0:0:0:1 - - [15/Feb/2017:16:30:33 +0800] "GET / HTTP/1.1" 404 994 0:0:0:0:0:0:0:1 - - [15/Feb/2017:16:33:52 +0800] "GET / HTTP/1.1" 404 994 127.0.0.1 - - [15/Feb/2017:16:40:54 +0800] "GET / HTTP/1.1" 404 994 127.0.0.1 - - [15/Feb/2017:16:40:54 +0800] "GET / HTTP/1.1" 404 994 0:0:0:0:0:0:0:1 - - [15/Feb/2017:16:40:59 +0800] "GET /sentiment_ms/login HTTP/1.1" 404 1030 0:0:0:0:0:0:0:1 - - [15/Feb/2017:16:41:07 +0800] "GET / HTTP/1.1" 404 994 0:0:0:0:0:0:0:1 - - [15/Feb/2017:16:41:08 +0800] "GET / HTTP/1.1" 404 994
2.代码
package com.zhen.apachelog; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class ApacheLog { public static class apacheMapper extends Mapper<Object, Text, Text, IntWritable>{ @Override protected void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException { String valueStr = value.toString(); String[] strings = valueStr.split("" "); String status = strings[1].split(" ")[0]; context.write(new Text(status), new IntWritable(1)); } } public static class apacheReduce extends Reducer<Text, IntWritable, Text, IntWritable>{ @Override protected void reduce(Text key, Iterable<IntWritable> value, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException { int count = 0; for (IntWritable intWritable : value) { count+=intWritable.get(); } context.write(key, new IntWritable(count)); } } public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf,args).getRemainingArgs(); Job job = new Job(conf,"ApacheLog"); job.setJarByClass(ApacheLog.class); job.setMapperClass(apacheMapper.class); job.setReducerClass(apacheReduce.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPaths(job, args[0]); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true)?0:1); } }
3.将代码生成jar包
4.调用
EFdeMacBook-Pro:hadoop-2.8.0 FengZhen$ hadoop jar /Users/FengZhen/Desktop/ApacheLog.jar com.zhen.apachelog.ApacheLog /mapreduce/data/apachelog/in /mapreduce/data/apachelog/out
17/09/13 15:32:22 INFO client.RMProxy: Connecting to ResourceManager at localhost/127.0.0.1:8032
17/09/13 15:32:23 INFO input.FileInputFormat: Total input files to process : 1
17/09/13 15:32:23 INFO mapreduce.JobSubmitter: number of splits:1
17/09/13 15:32:23 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1505268150495_0017
17/09/13 15:32:23 INFO impl.YarnClientImpl: Submitted application application_1505268150495_0017
17/09/13 15:32:23 INFO mapreduce.Job: The url to track the job: http://192.168.1.64:8088/proxy/application_1505268150495_0017/
17/09/13 15:32:23 INFO mapreduce.Job: Running job: job_1505268150495_0017
17/09/13 15:32:32 INFO mapreduce.Job: Job job_1505268150495_0017 running in uber mode : false
17/09/13 15:32:32 INFO mapreduce.Job: map 0% reduce 0%
17/09/13 15:32:37 INFO mapreduce.Job: map 100% reduce 0%
17/09/13 15:32:43 INFO mapreduce.Job: map 100% reduce 100%
17/09/13 15:32:43 INFO mapreduce.Job: Job job_1505268150495_0017 completed successfully
17/09/13 15:32:43 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=216
FILE: Number of bytes written=272795
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=1776
HDFS: Number of bytes written=13
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=3160
Total time spent by all reduces in occupied slots (ms)=3167
Total time spent by all map tasks (ms)=3160
Total time spent by all reduce tasks (ms)=3167
Total vcore-milliseconds taken by all map tasks=3160
Total vcore-milliseconds taken by all reduce tasks=3167
Total megabyte-milliseconds taken by all map tasks=3235840
Total megabyte-milliseconds taken by all reduce tasks=3243008
Map-Reduce Framework
Map input records=21
Map output records=21
Map output bytes=168
Map output materialized bytes=216
Input split bytes=150
Combine input records=0
Combine output records=0
Reduce input groups=2
Reduce shuffle bytes=216
Reduce input records=21
Reduce output records=2
Spilled Records=42
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=54
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=358612992
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=1626
File Output Format Counters
Bytes Written=13
5.查看结果
EFdeMacBook-Pro:lib FengZhen$ hadoop fs -ls /mapreduce/data/apachelog/out
Found 2 items
-rw-r--r-- 1 FengZhen supergroup 0 2017-09-13 15:32 /mapreduce/data/apachelog/out/_SUCCESS
-rw-r--r-- 1 FengZhen supergroup 13 2017-09-13 15:32 /mapreduce/data/apachelog/out/part-r-00000
EFdeMacBook-Pro:lib FengZhen$ hadoop fs -text /mapreduce/data/apachelog/out/part-r-00000
200 8
404 13