• 关于 郭峰君 的 d ( x² + y² + z² ) = d ( c² t² )


    写这篇文章 的 起因 是 反相吧 对 郭峰君 剖析 相对论 的 讨论 ,  见 《【我的目的十分明确】》   http://tieba.baidu.com/p/6331533004  , 《平阳睡狮郭峰君 :》  http://tieba.baidu.com/p/6331377555        等 帖  。

     

    根据   d ( x² + y² + z² ) = d ( c² t² )    推导 出   Vx² + Vy² + Vz² = C²   ,        这 似乎 确实 可以 不证自明,   这一点 可以在 几何 上 证明  。

     

    我们 先 看看 代数 的 推导 过程,   代数 的 推导 就是 全科学理论体系 推导 的 那样 :

    d ( x² + y² + z² ) = d ( c² t² )

    dx² + dy² + dz²  =  c² dt²

    2x dx + 2y dy + 2z dz  =  c²  2t dt

    x/t dx/dt + y/t dy/dt + z/t dz/dt = c²

    因为 x/t = dx/dt = Vx,  y/t = dy/dt = Vy,   z/t = dz/dt = Vz    ,   所以,

    Vx² + Vy² + Vz² = c²  

     

    注意,   x/t = dx/dt = Vx,  y/t = dy/dt = Vy,   z/t = dz/dt = Vz      是 一个 关键 的 条件  。

     

    再 看看 几何 的 推导 :

    因为  d ( x² + y² + z² ) = d ( c² t² )  ,   所以 有 x² + y² + z² = c² t²  ,

    设  L  是  x² + y² + z²  =  c² t²     表示 的 直线,    L 也表示 直线 L 从 原点 到  ( x, y, z ) 点  的 距离 ,

    则    根据 勾股定理,        ( dx )² + ( dy )² + ( dz )²  =  ( dL )²  ,

    两边 除以  ( dt )²    ,         ( dx  / dt )² + ( dy / dt )² + ( dz / dt )²  =  ( dL / dt )²

    即    Vx² + Vy² + Vz² = c²           。

     

    所以,   从 几何 的 角度 ,  根据  d ( x² + y² + z² ) = d ( c² t² )  可以 推出  Vx² + Vy² + Vz² = c²  ,  这个 过程 很直观,  所以会觉得 自然而然,不证自明,  呵呵呵   。

     

    本文发到了  反相吧 ,   《关于 郭峰君 的 d ( x² + y² + z² ) = d ( c² t² )》    http://tieba.baidu.com/p/6332130606    ,  下面 是 帖 里的 回复讨论,  我在 帖 里 是 K歌之王    。

     

    2 楼

    全科学理论体系 :

    ( dx )² + ( dy )² + ( dz )² = ( dL )² ,这个不行。

     

    全科学理论体系: 其实由此可见,微分写法还真是一个应该慎重考虑的问题,以免科学也会出现望文生义的问题。

     

    3 楼

    K歌之王 :

    回复 2 楼  全科学理论体系 我写的 ( dx )² 是 实打实 的 dx 的 平方 。  

     

    这样,我们 按 严格 的 写法 来 写,

     

    dx² 表示 x² 的 微分,

    ( dx )² 表示 dx 的 平方,

    d ( dy / dx ) / dx 表示 二阶导数 。

     

    4 楼

    全科学理论体系 :

    Δ和d作为运算符号,它们是有所不同的。

     

    K歌之王: 嗯

     

    5 楼

    happyird :

    楼主K歌之王啊,你配合郭德强玩这种为相对论打掩护的把戏,试问,你这样表演数学能说明相对于不同参照系,光速为同一值c么!

     

    K歌之王: 猴哥 好, 其实 我也 不太 理解 光速不变, 老郭 在 他的 论文 里 打了个 比喻, 水里由 分子 构成 的 物质 的 运动 速度 不能 超过 水 中 的 声速 。  

     

    7 楼

    K歌之王 :

    其实 我们 应该 发明 一些 新的 写法 , 把 二阶导数 和 n 阶导数 写成 这样 :

     

    ( dy / dx ) 2 阶 , ( dy / dx ) n 阶 。

     

    这样的话, ( dy / dx ) n 阶 * dx = d ( ( dy / dx ) ( n - 1 ) 阶 ) / dx * dx = d ( ( dy / dx ) ( n - 1 ) 阶 ) ,

    即 ( dy / dx ) n 阶 * dx = d ( ( dy / dx ) ( n - 1 ) 阶 ) 。

     

    设 ( dy / dx ) n 阶 = fn ( x ) ,

    两边积分 ∫ ( dy / dx ) n 阶 dx = ∫ fn ( x ) dx ,

    ∫ d ( ( dy / dx ) ( n - 1 ) 阶 ) / dx * dx = ∫ fn ( x ) dx 

    ∫ d ( ( dy / dx ) ( n - 1 ) 阶 ) = ∫ fn ( x ) dx

    ( dy / dx ) ( n - 1 ) 阶 = ∫ fn ( x ) dx 

     

    即 ( dy / dx ) ( n - 1 ) 阶 = ∫ fn ( x ) dx 。

     

    这种 写法 类似 程序设计 里 的 递归 。

    艾特               全科学理论体系

     

     

     

     

     

     

     

     

  • 相关阅读:
    无限级树结构
    Web Host下的URL路由
    EventBus
    C#与Java对比学习:类型判断、类与接口继承、代码规范与编码习惯、常量定义
    SQL语法的重要知识点总结
    【经典算法】——KMP,深入讲解next数组的求解
    多线程基础2
    IOS6:在你的APP内使用PASSBOOK
    缓存子系统如何设计
    趋势:Chrome为打包应用提供强大新特性
  • 原文地址:https://www.cnblogs.com/KSongKing/p/11826355.html
Copyright © 2020-2023  润新知