• Codechef July Challenge 2018 : Picking Fruit for Chefs


    传送门

    好久没写题解了,就过来水两篇。

    对于每一个人,考虑一个序列$A$,$A_I$表示当k取值为 i 时的答案。

    如果说有两个人,我们可以把$(A+B)^k$二项式展开,这样就发现把两个人合并起来的操作就是一次卷积,直接NTT就可以了。

    同类人有多个,直接暴力肯定是不行的。快速幂的话不知道会不会T,我是用了多项式取ln和exp(拉板子)。

    #include<cmath>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #define MN 400002
    using namespace std;
    int read_p,read_ca;
    inline int read(){
        read_p=0;read_ca=getchar();
        while(read_ca<'0'||read_ca>'9') read_ca=getchar();
        while(read_ca>='0'&&read_ca<='9') read_p=read_p*10+read_ca-48,read_ca=getchar();
        return read_p;
    }
    const int MOD=998244353,g=3;
    inline int mi(int x,int y){
        int mmh=1;
        while (y){
            if (y&1) mmh=1LL*mmh*x%MOD;
            y>>=1;x=1LL*x*x%MOD;
        }
        return mmh;
    }
    int tot,k,n,m,f[MN],mmh,I[MN],_I[MN],L[MN],R[MN],MMH,N[MN],A[MN],B[MN],e[MN],_e[MN],W[MN],C_a[MN],C_b[MN],N_c[MN],C[MN],D[MN],Q[MN],_A[MN],_B[MN],ANS[MN];
    inline void M(int &x){while(x>=MOD)x-=MOD;while(x<0)x+=MOD;}
    inline int ask(int n,int k){
        for (int i=1;i<=k+1;i++) N[i]=mi(i,k);
        for (int i=1;i<=k+1;i++) M(N[i]+=N[i-1]);
        n%=MOD;
        for (int i=0;i<=k+1;i++) L[i]=R[i]=n-i;
        for (int i=1;i<=k+1;i++) L[i]=1ll*L[i-1]*L[i]%MOD;
        for (int i=k;i>=0;i--) R[i]=1ll*R[i+1]*R[i]%MOD;
        mmh=0;
        for (int i=0;i<=k+1;i++){
            MMH=N[i];
            if (i>0) MMH=1LL*MMH*_I[i]%MOD*L[i-1]%MOD;
            if (i<k+1) MMH=1LL*MMH*_I[k+1-i]%MOD*((k+1-i)%2?-1:1)*R[i+1]%MOD;
            M(mmh+=MMH);
        }
        return mmh;
    }
    inline void inv(){
        int base=mi(g,(MOD-1)/tot),_base=mi(base,MOD-2);
        e[0]=_e[0]=1;
        for (int i=1;i<=tot;i++) e[i]=1LL*e[i-1]*base%MOD,_e[i]=1LL*_e[i-1]*_base%MOD;
    }
    inline void NTT(int N,int a[],int w[]){
        for (int j,i=j=0;i<N;i++){
            if (i>j) swap(a[i],a[j]);
            for (int k=N>>1;(j^=k)<k;k>>=1);
        }
        for (int i=2;i<=N;i<<=1){
            for (int k,j=k=0,s=tot/i;k<(i>>1);j+=s,k++) W[k]=w[j];
            for (int m=i>>1,j=0;j<N;j+=i)
            for (int k=0;k<m;k++){
                int A=j+k,B=A+m,z=1LL*a[B]*W[k]%MOD;
                M(a[B]=a[A]-z);
                M(a[A]+=z);
            }
        }
    }
    inline void cc(int n,int m,int a[],int b[],int c[]){
        int N=1,i;while (N<(n+m)) N<<=1;
        for (i=0;i<n;i++) C_a[i]=a[i];fill(C_a+n,C_a+N,0);
        for (i=0;i<m;i++) C_b[i]=b[i];fill(C_b+m,C_b+N,0);
        NTT(N,C_a,e);NTT(N,C_b,e);
        for (i=0;i<N;i++) c[i]=1LL*C_a[i]*C_b[i]%MOD;
        NTT(N,c,_e);
        int w=mi(N,MOD-2);
        for (i=0;i<N;i++) c[i]=1LL*c[i]*w%MOD;
    }
    inline void _D(int n,int a[],int b[]){for (int i=0;i<n;i++) b[i]=1LL*(i+1)*a[i+1]%MOD;b[n]=0;}
    inline void _S(int n,int a[],int b[]){for (int i=n;i;i--) b[i]=1LL*a[i-1]*I[i]%MOD;b[0]=0;}
    void ny(int n,int a[],int b[]){
        if (n==1) memset(b,0,sizeof(int)*tot),b[0]=mi(a[0],MOD-2);else{
            ny((n+1)>>1,a,b);
            register int i;
            int N=1;while (N<(n<<1)) N<<=1;
            copy(a,a+n,N_c);fill(N_c+n,N_c+N,0);
            NTT(N,N_c,e);NTT(N,b,e);
            for (i=0;i<N;i++) b[i]=(2LL-1LL*N_c[i]*b[i]%MOD+MOD)*b[i]%MOD;
            NTT(N,b,_e);
            int w=mi(N,MOD-2);
            for (i=0;i<n;i++) b[i]=1LL*b[i]*w%MOD;fill(b+n,b+N,0);
        }
    }
    void sqrt(int n,int a[],int b[]){
        if (n==1) memset(b,0,sizeof(int)*tot),b[0]=int(sqrt(a[0])+0.5);else{
            sqrt((n+1)>>1,a,b);
            register int i;
            int N=1,w=I[2];while (N<(n<<1)) N<<=1;
            copy(b,b+n,D);fill(D+n,D+N,0);
            for (i=0;i<n;i++) M(D[i]<<=1);
            ny(n,D,C);
            cc(n,n,a,C,C);
            for (i=0;i<n;i++) b[i]=(1LL*w*b[i]+C[i])%MOD;
        }
    }
    inline void Ln(int n,int a[],int b[]){
        memset(C,0,sizeof(int)*tot);memset(D,0,sizeof(int)*tot);
        _D(n,a,D);ny(n,a,C);
        cc(n,n,D,C,b);
        _S(n,b,b);
    }
    void exp(int n,int a[],int b[]){
        if (n==1) memset(b,0,sizeof(int)*tot),b[0]=1;else{
            exp((n+1)>>1,a,b);
            Ln(n,b,Q);
            int N=1,w=(MOD+1)>>1;while (N<(n<<1)) N<<=1;
            for (int i=0;i<n;i++) M(Q[i]=a[i]-Q[i]);M(Q[0]+=1);
            cc(n,n,Q,b,b);
            fill(b+n,b+N,0);
        }
    }
    void work(int n,int C[]){
        if (n==0){
            C[0]=1;
            for (int i=1;i<k;i++) C[i]=0;
        }
        for (int i=0;i<k;i++) A[i]=_I[i+1];
        ny(k,A,B);
        for (int i=0;i<k;i++) A[i]=1LL*mi(n+1,i+1)*_I[i+1]%MOD;
        cc(k,k,A,B,C);
    }
    int main(){
        scanf("%d%d%d",&k,&m,&n);k++;
        for(tot=1;tot<(k<<1);tot<<=1);inv();
        I[1]=1;for (int i=2;i<MN;i++) I[i]=1LL*(MOD-MOD/i)*I[MOD%i]%MOD;
        f[0]=_I[0]=1;for (int i=1;i<MN;i++) _I[i]=1LL*_I[i-1]*I[i]%MOD,f[i]=1LL*f[i-1]*i%MOD;
        //scanf("%d%d%d",&k,&m,&n);
        //n=3;k=10;
        /*for (int i=0;i<=k;i++) S[i]=1LL*ask(n,i)*I[i]%MOD;
        for (int i=0;i<=k;i++){
            int o=0;
            for (int j=0;j<=i;j++) o=(1LL*S[i]*I[j+1]+o)%MOD;
            printf("%d ",o);
        }
        puts("");
        for (int i=0;i<=k;i++)
        printf("%d ",1LL*(mi(n+1,i+1)-1)*I[i+1]%MOD);
        puts("");
        */
        ANS[0]=1;
        for (int i=1;i<=n;i++){
            int a,b,c;
            scanf("%d%d%d",&a,&b,&c);
            work(a-1,_A);work(b,_B);
            //for (int i=0;i<k;i++) printf("%d ",1ll*_B[i]*f[i]%MOD);puts("");
            int tmp=mi(b-a+1,MOD-2);
            for (int i=0;i<k;i++) M(_B[i]-=_A[i]),_B[i]=1LL*_B[i]*tmp%MOD;
            Ln(k,_B,_A);
            for (int i=0;i<k;i++) _A[i]=1LL*_A[i]*c%MOD;
            exp(k,_A,_B);
            cc(k,k,ANS,_B,ANS);
            //for (int i=0;i<k;i++) printf("%d ",1LL*ANS[i]*f[i]);puts("");
        }
        printf("%d
    ",1LL*ANS[k-1]*f[k-1]%MOD);
    }
    View Code
  • 相关阅读:
    Linux快速入门(七)效率工具(Vim)
    SQLILABS(Less6)
    SQLILABS(Less5)
    SQLILABS(Less1)
    Linux快速入门(八)效率工具(SSH)
    SQLILABS(Less2)
    SQLILABS(Less4)
    【Leetcode】768. 最多能完成排序的块 II
    SQLILABS(Less7)
    SQLILABS(Less3)
  • 原文地址:https://www.cnblogs.com/Enceladus/p/9427389.html
Copyright © 2020-2023  润新知