• 【BZOJ2693】jzptab


    题目大意

    给定(n,m,(1leq n,m leq 1e7)),求(sumlimits_{i=1}^nsumlimits_{j=1}^mlcm(i,j)),答案对(1e8+9)取模,(T(1leq T leq 1e4))组询问。

    题目分析

    前半部分同【2011集训贾志鹏】Crash 的数字表格

    但是,由于多组询问,原来的(O(n))做法已经无法满足要求,所以,我们需要更优秀的(O(sqrt n))做法。

    以下式子从【2011集训贾志鹏】Crash 的数字表格的最后一步开始化简。

    [egin{split} ans &=sumlimits_{d=1}^n dcdot f(1)\ &=sumlimits_{d=1}^n dcdot sumlimits_{i=1}^{lfloorfrac n d floor}mu(i)cdot g(i)\ &=sumlimits_{d=1}^n dcdot sumlimits_{i=1}^{lfloorfrac n d floor}mu(i)cdot icdot icdot sum(lfloorfrac n {di} floor)cdot sum(lfloorfrac m {di} floor)\ &=sumlimits_{i=1}^nmu(i)cdot i^2sumlimits_{d=1}^{lfloorfrac ni floor}sum(lfloorfrac n{di} floor)cdot sum(lfloorfrac m{di} floor)cdot d\ &=sumlimits_{i=1}^nmu(i)cdot i^2sumlimits_{i|T}^nsum(lfloorfrac nT floor)cdot sum(lfloorfrac mT floor)cdot frac Ti\ &=sumlimits_{T=1}^nsum(lfloorfrac nT floor)cdot sum(lfloorfrac mT floor)sumlimits_{i|T}mu(i)cdot i^2cdot frac Ti\ &=sumlimits_{T=1}^nsum(lfloorfrac nT floor)cdot sum(lfloorfrac mT floor)sumlimits_{i|T}mu(i)cdot icdot T\ &=sumlimits_{T=1}^nsum(lfloorfrac nT floor)cdot sum(lfloorfrac mT floor)cdot Tsumlimits_{i|T}mu(i)cdot i\ end{split} ]

    其中(sum(i)=frac{(1+i)cdot(i)}{2}),可以直接计算出;(sumlimits_{i|T}mu(i)cdot i)不是积性函数,但仍可以预处理出。

    套上整除分块,这个算法的时间复杂度便达到了(O(sqrt n)),可以满足题目要求。

    代码实现

    #include<iostream>
    #include<cstring>
    #include<cmath>
    #include<algorithm>
    #include<cstdio>
    #include<iomanip>
    #include<cstdlib>
    #define MAXN 0x7fffffff
    typedef long long LL;
    const int N=1e7+5,mod=1e8+9;
    using namespace std;
    inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
    int g[N],prime[N];
    bool vis[N];
    int sum(int x){return 1ll*(1+x)*x/2%mod;}
    int main(){
    	g[1]=1;
    	for(int i=2;i<=1e7;i++){
    		if(!vis[i])prime[++prime[0]]=i,g[i]=1-i;
    		for(int j=1;j<=prime[0]&&1ll*i*prime[j]<=1e7;j++){
    			vis[i*prime[j]]=1;
    			if(i%prime[j]==0){
    				g[i*prime[j]]=g[i];
    				break;
    			}
    			g[i*prime[j]]=(g[i]-1ll*prime[j]*g[i])%mod;
    		}
    	} 
    	for(int i=1;i<=1e7;i++)g[i]=(1ll*g[i]*i+g[i-1])%mod;
    	
    	int T=Getint();
    	while(T--){
    		int n=Getint(),m=Getint();
    		if(n>m)swap(n,m);
    		int ans=0;
    		for(int l=1,r;l<=n;l=r+1){
    			r=min(n/(n/l),m/(m/l));
    			ans=(ans+1ll*sum(n/l)*sum(m/l)%mod*(g[r]-g[l-1])%mod)%mod; 
    		}
    		cout<<(ans+mod)%mod<<'
    ';
    	}
    	return 0;
    }
    
  • 相关阅读:
    AcWing 852. spfa判断负环 边权可能为负数。
    面试题 02.01. 移除重复节点
    1114. 按序打印
    剑指 Offer 38. 字符串的排列
    557. 反转字符串中的单词 III
    645. 错误的集合
    面试题 05.03. 翻转数位
    1356. 根据数字二进制下 1 的数目排序
    748. 最短完整词
    剑指 Offer 32
  • 原文地址:https://www.cnblogs.com/Emiya-wjk/p/10002006.html
Copyright © 2020-2023  润新知