Given an array of integers, the majority number is the number that occurs more than 1/3 of the size of the array. Find it. Note There is only one majority number in the array Example For [1, 2, 1, 2, 1, 3, 3] return 1 Challenge O(n) time and O(1) space
三三抵销法,但是也有需要注意的地方:
1. 我们对cnt1,cnt2减数时,相当于丢弃了3个数字(当前数字,candidate1, candidate2)。也就是说,每一次丢弃数字,我们是丢弃3个不同的数字。
而Majority number超过了1/3所以它最后一定会留下来。
设定总数为N, majority number次数为m。丢弃的次数是x。则majority 被扔的次数是x
而m > N/3, N - 3x > 0.
3m > N, N > 3x 所以 3m > 3x, m > x 也就是说 m一定没有被扔完
最坏的情况,Majority number每次都被扔掉了,但它一定会在n1,n2中。
2. 为什么最后要再检查2个数字呢(从头开始统计,而不用剩下的count1, count2)?因为数字的编排可以让majority 数被过度消耗,使其计数反而小于n2,或者等于n2.前面举的例子即是。
另一个例子:
1 1 1 1 2 3 2 3 4 4 4 这个 1就会被消耗过多,最后余下的反而比4少。
1 public class Solution { 2 /** 3 * @param nums: A list of integers 4 * @return: The majority number that occurs more than 1/3 5 */ 6 public int majorityNumber(ArrayList<Integer> nums) { 7 // write your code 8 int candidate1 = 0; 9 int candidate2 = 0; 10 int count1 = 0; 11 int count2 = 0; 12 for (int elem : nums) { 13 if (count1 == 0) { 14 candidate1 = elem; 15 } 16 if (count2 == 0 && elem != candidate1) { 17 candidate2 = elem; 18 } 19 if (candidate1 == elem) { 20 count1++; 21 } 22 if (candidate2 == elem) { 23 count2++; 24 } 25 if (candidate1 != elem && candidate2 != elem) { 26 count1--; 27 count2--; 28 } 29 } 30 31 count1 = 0; 32 count2 = 0; 33 for (int elem : nums) { 34 if (elem == candidate1) count1++; 35 else if (elem == candidate2) count2++; 36 } 37 return count1>count2? candidate1 : candidate2; 38 } 39 }