• Gym 100952J&&2015 HIAST Collegiate Programming Contest J. Polygons Intersection【计算几何求解两个凸多边形的相交面积板子题】


    J. Polygons Intersection

    time limit per test:2 seconds
    memory limit per test:64 megabytes
    input:standard input
    output:standard output

    We will not waste your time, it is a straightforward problem. Given multiple polygons, calculate the area of their intersection. For simplicity, there will be exactly 2 polygons both of them are convex, given in the counterclockwise order and have non-zero areas. Furthermore, in one polygon a vertex won't be on the sides of the other one. The figure below demonstrates the first test case.

    Input

    The first line of the input will be a single integer T, the number of test cases (1  ≤  T  ≤  20). each test case contains two integers (3  ≤  N, M  ≤  40) Then a line contains N pairs of integers xi, yi (-1000  ≤  xi, yi  ≤  1000) coordinates of the ith vertex of polygon A, followed by a line contains M pairs of integers xj, yj (-1000  ≤  xj, yj  ≤  1000) coordinates of the jth vertex of polygon B. The coordinates are separated by a single space.

    Output

    For each test case, print on a single line, a single number representing the area of intersection, rounded to four decimal places.

    Examples
    Input
    2
    5 3
    0 3 1 1 3 1 3 5 1 5
    1 3 5 3 3 6
    3 3
    -1 -1 -2 -1 -1 -2
    1 1 2 1 1 2
    Output
    2.6667
    0.0000


    题目链接:http://codeforces.com/gym/100952/problem/J

    题意:给2个凸多边形,求相交面积

    思路:板子题,学习一下!

    下面给出AC代码:

      1 #include "iostream"
      2 #include "string.h"
      3 #include "stack"
      4 #include "queue"
      5 #include "string"
      6 #include "vector"
      7 #include "set"
      8 #include "map"
      9 #include "algorithm"
     10 #include "stdio.h"
     11 #include "math.h"
     12 #define ll long long
     13 #define bug(x) cout<<x<<" "<<"UUUUU"<<endl;
     14 #define mem(a) memset(a,0,sizeof(a))
     15 #define mp(x,y) make_pair(x,y)
     16 using namespace std;
     17 const long long INF = 1e18+1LL;
     18 const int inf = 1e9+1e8;
     19 const int N=1e5+100;
     20 #define maxn 510
     21 const double eps=1E-8;
     22 int sig(double d){
     23     return(d>eps)-(d<-eps);
     24 }
     25 struct Point{
     26     double x,y; Point(){}
     27     Point(double x,double y):x(x),y(y){}
     28     bool operator==(const Point&p)const{
     29         return sig(x-p.x)==0&&sig(y-p.y)==0;
     30     }
     31 };
     32 double cross(Point o,Point a,Point b){
     33     return(a.x-o.x)*(b.y-o.y)-(b.x-o.x)*(a.y-o.y);
     34 }
     35 double area(Point* ps,int n){
     36     ps[n]=ps[0];
     37     double res=0;
     38     for(int i=0;i<n;i++){
     39         res+=ps[i].x*ps[i+1].y-ps[i].y*ps[i+1].x;
     40     }
     41     return res/2.0;
     42 }
     43 int lineCross(Point a,Point b,Point c,Point d,Point&p){
     44     double s1,s2;
     45     s1=cross(a,b,c);
     46     s2=cross(a,b,d);
     47     if(sig(s1)==0&&sig(s2)==0) return 2;
     48     if(sig(s2-s1)==0) return 0;
     49     p.x=(c.x*s2-d.x*s1)/(s2-s1);
     50     p.y=(c.y*s2-d.y*s1)/(s2-s1);
     51     return 1;
     52 }
     53 //多边形切割
     54 //用直线ab切割多边形p,切割后的在向量(a,b)的左侧,并原地保存切割结果
     55 //如果退化为一个点,也会返回去,此时n为1
     56 void polygon_cut(Point*p,int&n,Point a,Point b){
     57     static Point pp[maxn];
     58     int m=0;p[n]=p[0];
     59     for(int i=0;i<n;i++){
     60         if(sig(cross(a,b,p[i]))>0) pp[m++]=p[i];
     61         if(sig(cross(a,b,p[i]))!=sig(cross(a,b,p[i+1])))
     62             lineCross(a,b,p[i],p[i+1],pp[m++]);
     63     }
     64     n=0;
     65     for(int i=0;i<m;i++)
     66         if(!i||!(pp[i]==pp[i-1]))
     67             p[n++]=pp[i];
     68     while(n>1&&p[n-1]==p[0])n--;
     69 }
     70 //---------------华丽的分隔线-----------------//
     71 //返回三角形oab和三角形ocd的有向交面积,o是原点//
     72 double intersectArea(Point a,Point b,Point c,Point d){
     73     Point o(0,0);
     74     int s1=sig(cross(o,a,b));
     75     int s2=sig(cross(o,c,d));
     76     if(s1==0||s2==0)return 0.0;//退化,面积为0
     77     if(s1==-1) swap(a,b);
     78     if(s2==-1) swap(c,d);
     79     Point p[10]={o,a,b};
     80     int n=3;
     81     polygon_cut(p,n,o,c);
     82     polygon_cut(p,n,c,d);
     83     polygon_cut(p,n,d,o);
     84     double res=fabs(area(p,n));
     85     if(s1*s2==-1) res=-res;return res;
     86 }
     87 //求两多边形的交面积
     88 double intersectArea(Point*ps1,int n1,Point*ps2,int n2){
     89     if(area(ps1,n1)<0) reverse(ps1,ps1+n1);
     90     if(area(ps2,n2)<0) reverse(ps2,ps2+n2);
     91     ps1[n1]=ps1[0];
     92     ps2[n2]=ps2[0];
     93     double res=0;
     94     for(int i=0;i<n1;i++){
     95         for(int j=0;j<n2;j++){
     96             res+=intersectArea(ps1[i],ps1[i+1],ps2[j],ps2[j+1]);
     97         }
     98     }
     99     return res;//assumeresispositive!
    100 }
    101 //hdu-3060求两个任意简单多边形的并面积
    102 Point ps1[maxn],ps2[maxn];
    103 int n1,n2;
    104 int main(){
    105     int t;
    106     cin>>t;
    107     while(t--){
    108         scanf("%d%d",&n1,&n2);
    109         for(int i=0;i<n1;i++)
    110             scanf("%lf%lf",&ps1[i].x,&ps1[i].y);
    111         for(int i=0;i<n2;i++)
    112             scanf("%lf%lf",&ps2[i].x,&ps2[i].y);
    113         double ans=intersectArea(ps1,n1,ps2,n2);
    114         //ans=fabs(area(ps1,n1))+fabs(area(ps2,n2))-ans;//容斥
    115         printf("%.4f
    ",ans);
    116     }
    117     return 0;
    118 }
  • 相关阅读:
    java集合
    移动web页面给用户发送邮件的方法
    如何用CSS和jQuery实现一个侧滑导航菜单
    基于jq的表单填充
    使用JS代码实现点击按钮下载文件
    变量,作用域和内存问题
    如何实现单行/多行文本溢出的省略(...)
    CSS中浮动和定位对元素宽度/外边距/其他元素所占空间的影响
    【javascript】函数中的this的四种绑定形式
    前端开发利器webStorm
  • 原文地址:https://www.cnblogs.com/ECJTUACM-873284962/p/7233421.html
Copyright © 2020-2023  润新知