奇怪的线段树合并增加了!
朴素的 (dp) 是 (dp_u = min{dp_v + a_u imes b_v} [v in subtree(u)])
然后我们发现这个是一个 (kx + b) 的形式,也就是 (b_v(a_u) + dp_v),所以需要的是一个子树信息,子树信息能想到什么?线段树合并?dsu on tree?启发式合并?感觉都能做。
然后的话这里选择了线段树合并,至于朴素的线段树合并,线段树合并的复杂度是 (n log n) 的,证明的话,就考虑 (f(a + b) = f(a) + f(b) + sz(a igcap b)) 容易发现这边 (sz(a igcap b)) 不会超过 (min{a,b}) 然后证明就很显然了,但是对于李超树合并,需要做的一点是,这个信息不可加,不可减,不可简单合并,所以要把 (a igcap b) 的部分直接插到树上,复杂度是 (n log^2 n),所以做完了。
// powered by c++11
// by Isaunoya
#include <bits/stdc++.h>
#define rep(i, x, y) for (register int i = (x); i <= (y); ++i)
#define Rep(i, x, y) for (register int i = (x); i >= (y); --i)
using namespace std;
using db = double;
using ll = long long;
using uint = unsigned int;
using ull = unsigned long long;
#define pii pair<int, int>
#define fir first
#define sec second
template <class T>
void cmax(T& x, const T& y) {
if (x < y) x = y;
}
template <class T>
void cmin(T& x, const T& y) {
if (x > y) x = y;
}
#define all(v) v.begin(), v.end()
#define sz(v) ((int)v.size())
#define pb emplace_back
template <class T>
void sort(vector<T>& v) {
sort(all(v));
}
template <class T>
void reverse(vector<T>& v) {
reverse(all(v));
}
template <class T>
void unique(vector<T>& v) {
sort(all(v)), v.erase(unique(all(v)), v.end());
}
void reverse(string& s) { reverse(s.begin(), s.end()); }
const int io_size = 1 << 23 | 233;
const int io_limit = 1 << 22;
struct io_in {
char ch;
#ifndef __WIN64
char getchar() {
static char buf[io_size], *p1 = buf, *p2 = buf;
return (p1 == p2) && (p2 = (p1 = buf) + fread(buf, 1, io_size, stdin), p1 == p2) ? EOF : *p1++;
}
#endif
io_in& operator>>(char& c) {
for (c = getchar(); isspace(c); c = getchar());
return *this;
}
io_in& operator>>(string& s) {
for (s.clear(); isspace(ch = getchar());)
;
if (!~ch) return *this;
for (s = ch; !isspace(ch = getchar()) && ~ch; s += ch)
;
return *this;
}
io_in& operator>>(char* str) {
char* cur = str;
while (*cur) *cur++ = 0;
for (cur = str; isspace(ch = getchar());)
;
if (!~ch) return *this;
for (*cur = ch; !isspace(ch = getchar()) && ~ch; *++cur = ch)
;
return *++cur = 0, *this;
}
template <class T>
void read(T& x) {
bool f = 0;
while ((ch = getchar()) < 48 && ~ch) f ^= (ch == 45);
x = ~ch ? (ch ^ 48) : 0;
while ((ch = getchar()) > 47) x = x * 10 + (ch ^ 48);
x = f ? -x : x;
}
io_in& operator>>(int& x) { return read(x), *this; }
io_in& operator>>(ll& x) { return read(x), *this; }
io_in& operator>>(uint& x) { return read(x), *this; }
io_in& operator>>(ull& x) { return read(x), *this; }
io_in& operator>>(db& x) {
read(x);
bool f = x < 0;
x = f ? -x : x;
if (ch ^ '.') return *this;
double d = 0.1;
while ((ch = getchar()) > 47) x += d * (ch ^ 48), d *= .1;
return x = f ? -x : x, *this;
}
} in;
struct io_out {
char buf[io_size], *s = buf;
int pw[233], st[233];
io_out() {
set(7);
rep(i, pw[0] = 1, 9) pw[i] = pw[i - 1] * 10;
}
~io_out() { flush(); }
void io_chk() {
if (s - buf > io_limit) flush();
}
void flush() { fwrite(buf, 1, s - buf, stdout), fflush(stdout), s = buf; }
io_out& operator<<(char c) { return *s++ = c, *this; }
io_out& operator<<(string str) {
for (char c : str) *s++ = c;
return io_chk(), *this;
}
io_out& operator<<(char* str) {
char* cur = str;
while (*cur) *s++ = *cur++;
return io_chk(), *this;
}
template <class T>
void write(T x) {
if (x < 0) *s++ = '-', x = -x;
do {
st[++st[0]] = x % 10, x /= 10;
} while (x);
while (st[0]) *s++ = st[st[0]--] ^ 48;
}
io_out& operator<<(int x) { return write(x), io_chk(), *this; }
io_out& operator<<(ll x) { return write(x), io_chk(), *this; }
io_out& operator<<(uint x) { return write(x), io_chk(), *this; }
io_out& operator<<(ull x) { return write(x), io_chk(), *this; }
int len, lft, rig;
void set(int _length) { len = _length; }
io_out& operator<<(db x) {
bool f = x < 0;
x = f ? -x : x, lft = x, rig = 1. * (x - lft) * pw[len];
return write(f ? -lft : lft), *s++ = '.', write(rig), io_chk(), *this;
}
} out;
#define int long long
template <int sz, int mod>
struct math_t {
math_t() {
fac.resize(sz + 1), ifac.resize(sz + 1);
rep(i, fac[0] = 1, sz) fac[i] = fac[i - 1] * i % mod;
ifac[sz] = inv(fac[sz]);
Rep(i, sz - 1, 0) ifac[i] = ifac[i + 1] * (i + 1) % mod;
}
vector<int> fac, ifac;
int qpow(int x, int y) {
int ans = 1;
for (; y; y >>= 1, x = x * x % mod)
if (y & 1) ans = ans * x % mod;
return ans;
}
int inv(int x) { return qpow(x, mod - 2); }
int C(int n, int m) {
if (n < 0 || m < 0 || n < m) return 0;
return fac[n] * ifac[m] % mod * ifac[n - m] % mod;
}
};
int gcd(int x, int y) { return !y ? x : gcd(y, x % y); }
int lcm(int x, int y) { return x * y / gcd(x, y); }
// dp_x = min{dp_y + a_x * b_y}
// a_x 处的 min { (b_y)a_x + dp_y }
// merge
const int maxn = 1e5 + 51;
int rt[maxn], ls[maxn << 5], rs[maxn << 5], id[maxn << 5], cnt = 0;
struct Line {
int k, b; inline int val(int x) { return k * x + b; }
} s[maxn];
void ins(int &p, int l, int r, int num) {
if(!p) { p = ++cnt; id[p] = num; return; }
int mid = l + r >> 1, &x = num, &y = id[p];
int midx = s[x].val(mid), midy = s[y].val(mid);
if(midx < midy) { x ^= y ^= x ^= y; }
int lx = s[x].val(l), ly = s[y].val(l);
int rx = s[x].val(r), ry = s[y].val(r);
if(lx >= ly && rx >= ry) return;
if(lx < ly) ins(ls[p], l, mid, num);
else ins(rs[p], mid + 1, r, num);
}
int merge(int x, int y, int l, int r) {
if(!x || !y) return x + y;
ins(x, l, r, id[y]);
int mid = l + r >> 1;
ls[x] = merge(ls[x], ls[y], l , mid);
rs[x] = merge(rs[x], rs[y], mid + 1, r);
return x;
}
int qry(int p, int l, int r, int pos) {
if(!p) return 1e18;
if(l == r) { return s[id[p]].val(pos); }
int mid = l + r >> 1, ans = s[id[p]].val(pos);
if(pos <= mid) { cmin(ans, qry(ls[p], l, mid, pos)); }
else { cmin(ans, qry(rs[p], mid + 1, r, pos)); }
return ans;
}
int n;
int L = -1e5, R = 1e5;
int dp[maxn], a[maxn], b[maxn];
vector <int> g[maxn];
void dfs(int u, int f) {
for(int v: g[u])
if(v ^ f) { dfs(v, u), rt[u] = merge(rt[u], rt[v], L, R); }
dp[u] = qry(rt[u], L, R, a[u]);
if(dp[u] == 1e18) dp[u] = 0;
s[u] = { b[u], dp[u] }, ins(rt[u], L, R, u);
}
signed main() {
// code begin.
in >> n;
rep(i , 1 , n) in >> a[i]; rep(i , 1 , n) in >> b[i];
rep(i , 2 , n) { int u, v; in >> u >> v, g[u].pb(v), g[v].pb(u); }
dfs(1, 0);
rep(i , 1 , n) { out << dp[i] << '
'; }
return 0;
// code end.
}