• CF932F Escape Through Leaf [李超树,线段树合并]


    奇怪的线段树合并增加了!

    朴素的 (dp)(dp_u = min{dp_v + a_u imes b_v} [v in subtree(u)])

    然后我们发现这个是一个 (kx + b) 的形式,也就是 (b_v(a_u) + dp_v),所以需要的是一个子树信息,子树信息能想到什么?线段树合并?dsu on tree?启发式合并?感觉都能做。

    然后的话这里选择了线段树合并,至于朴素的线段树合并,线段树合并的复杂度是 (n log n) 的,证明的话,就考虑 (f(a + b) = f(a) + f(b) + sz(a igcap b)) 容易发现这边 (sz(a igcap b)) 不会超过 (min{a,b}) 然后证明就很显然了,但是对于李超树合并,需要做的一点是,这个信息不可加,不可减,不可简单合并,所以要把 (a igcap b) 的部分直接插到树上,复杂度是 (n log^2 n),所以做完了。

    // powered by c++11
    // by Isaunoya
    #include <bits/stdc++.h>
    
    #define rep(i, x, y) for (register int i = (x); i <= (y); ++i)
    #define Rep(i, x, y) for (register int i = (x); i >= (y); --i)
    
    using namespace std;
    using db = double;
    using ll = long long;
    using uint = unsigned int;
    using ull = unsigned long long;
    
    #define pii pair<int, int>
    #define fir first
    #define sec second
    
    template <class T>
    
    void cmax(T& x, const T& y) {
      if (x < y) x = y;
    }
    
    template <class T>
    
    void cmin(T& x, const T& y) {
      if (x > y) x = y;
    }
    
    #define all(v) v.begin(), v.end()
    #define sz(v) ((int)v.size())
    #define pb emplace_back
    
    template <class T>
    
    void sort(vector<T>& v) {
      sort(all(v));
    }
    
    template <class T>
    
    void reverse(vector<T>& v) {
      reverse(all(v));
    }
    
    template <class T>
    
    void unique(vector<T>& v) {
      sort(all(v)), v.erase(unique(all(v)), v.end());
    }
    
    void reverse(string& s) { reverse(s.begin(), s.end()); }
    
    const int io_size = 1 << 23 | 233;
    const int io_limit = 1 << 22;
    struct io_in {
      char ch;
    #ifndef __WIN64
      char getchar() {
        static char buf[io_size], *p1 = buf, *p2 = buf;
    
        return (p1 == p2) && (p2 = (p1 = buf) + fread(buf, 1, io_size, stdin), p1 == p2) ? EOF : *p1++;
      }
    #endif
      io_in& operator>>(char& c) {
        for (c = getchar(); isspace(c); c = getchar());
    
        return *this;
      }
      io_in& operator>>(string& s) {
        for (s.clear(); isspace(ch = getchar());)
          ;
    
        if (!~ch) return *this;
    
        for (s = ch; !isspace(ch = getchar()) && ~ch; s += ch)
          ;
    
        return *this;
      }
    
      io_in& operator>>(char* str) {
        char* cur = str;
        while (*cur) *cur++ = 0;
    
        for (cur = str; isspace(ch = getchar());)
          ;
        if (!~ch) return *this;
    
        for (*cur = ch; !isspace(ch = getchar()) && ~ch; *++cur = ch)
          ;
    
        return *++cur = 0, *this;
      }
    
      template <class T>
    
      void read(T& x) {
        bool f = 0;
        while ((ch = getchar()) < 48 && ~ch) f ^= (ch == 45);
    
        x = ~ch ? (ch ^ 48) : 0;
        while ((ch = getchar()) > 47) x = x * 10 + (ch ^ 48);
        x = f ? -x : x;
      }
    
      io_in& operator>>(int& x) { return read(x), *this; }
    
      io_in& operator>>(ll& x) { return read(x), *this; }
    
      io_in& operator>>(uint& x) { return read(x), *this; }
    
      io_in& operator>>(ull& x) { return read(x), *this; }
    
      io_in& operator>>(db& x) {
        read(x);
        bool f = x < 0;
        x = f ? -x : x;
        if (ch ^ '.') return *this;
    
        double d = 0.1;
        while ((ch = getchar()) > 47) x += d * (ch ^ 48), d *= .1;
        return x = f ? -x : x, *this;
      }
    } in;
    
    struct io_out {
      char buf[io_size], *s = buf;
      int pw[233], st[233];
    
      io_out() {
        set(7);
        rep(i, pw[0] = 1, 9) pw[i] = pw[i - 1] * 10;
      }
    
      ~io_out() { flush(); }
    
      void io_chk() {
        if (s - buf > io_limit) flush();
      }
    
      void flush() { fwrite(buf, 1, s - buf, stdout), fflush(stdout), s = buf; }
    
      io_out& operator<<(char c) { return *s++ = c, *this; }
    
      io_out& operator<<(string str) {
        for (char c : str) *s++ = c;
        return io_chk(), *this;
      }
    
      io_out& operator<<(char* str) {
        char* cur = str;
        while (*cur) *s++ = *cur++;
        return io_chk(), *this;
      }
    
      template <class T>
    
      void write(T x) {
        if (x < 0) *s++ = '-', x = -x;
    
        do {
          st[++st[0]] = x % 10, x /= 10;
        } while (x);
    
        while (st[0]) *s++ = st[st[0]--] ^ 48;
      }
    
      io_out& operator<<(int x) { return write(x), io_chk(), *this; }
    
      io_out& operator<<(ll x) { return write(x), io_chk(), *this; }
    
      io_out& operator<<(uint x) { return write(x), io_chk(), *this; }
    
      io_out& operator<<(ull x) { return write(x), io_chk(), *this; }
    
      int len, lft, rig;
    
      void set(int _length) { len = _length; }
    
      io_out& operator<<(db x) {
        bool f = x < 0;
        x = f ? -x : x, lft = x, rig = 1. * (x - lft) * pw[len];
        return write(f ? -lft : lft), *s++ = '.', write(rig), io_chk(), *this;
      }
    } out;
    #define int long long
    
    template <int sz, int mod>
    
    struct math_t {
    	math_t() {
        fac.resize(sz + 1), ifac.resize(sz + 1);
        rep(i, fac[0] = 1, sz) fac[i] = fac[i - 1] * i % mod;
    
        ifac[sz] = inv(fac[sz]);
        Rep(i, sz - 1, 0) ifac[i] = ifac[i + 1] * (i + 1) % mod;
      }
    
      vector<int> fac, ifac;
    
      int qpow(int x, int y) {
        int ans = 1;
        for (; y; y >>= 1, x = x * x % mod)
          if (y & 1) ans = ans * x % mod;
        return ans;
      }
    
      int inv(int x) { return qpow(x, mod - 2); }
    
      int C(int n, int m) {
        if (n < 0 || m < 0 || n < m) return 0;
        return fac[n] * ifac[m] % mod * ifac[n - m] % mod;
      }
    };
    
    int gcd(int x, int y) { return !y ? x : gcd(y, x % y); }
    int lcm(int x, int y) { return x * y / gcd(x, y); }
    
    // dp_x = min{dp_y + a_x * b_y}
    // a_x 处的 min { (b_y)a_x + dp_y }
    // merge
    
    const int maxn = 1e5 + 51;
    int rt[maxn], ls[maxn << 5], rs[maxn << 5], id[maxn << 5], cnt = 0;
    struct Line {
    	int k, b; inline int val(int x) { return k * x + b; }
    } s[maxn];
    
    void ins(int &p, int l, int r, int num) {
    	if(!p) { p = ++cnt; id[p] = num; return; }
    	int mid = l + r >> 1, &x = num, &y = id[p];
    	int midx = s[x].val(mid), midy = s[y].val(mid);
    	if(midx < midy) { x ^= y ^= x ^= y; }
    	int lx = s[x].val(l), ly = s[y].val(l);
    	int rx = s[x].val(r), ry = s[y].val(r);
    	if(lx >= ly && rx >= ry) return;
    	if(lx < ly) ins(ls[p], l, mid, num);
    	else ins(rs[p], mid + 1, r, num);
    }
    
    int merge(int x, int y, int l, int r) {
    	if(!x || !y) return x + y;
    	ins(x, l, r, id[y]);
    	int mid = l + r >> 1;
    	ls[x] = merge(ls[x], ls[y], l , mid);
    	rs[x] = merge(rs[x], rs[y], mid + 1, r);
    	return x;
    }
    
    int qry(int p, int l, int r, int pos) {
    	if(!p) return 1e18;
    	if(l == r) { return s[id[p]].val(pos); }
    	int mid = l + r >> 1, ans = s[id[p]].val(pos);
    	if(pos <= mid) { cmin(ans, qry(ls[p], l, mid, pos)); }
    	else { cmin(ans, qry(rs[p], mid + 1, r, pos)); }
    	return ans;
    }
    
    int n;
    int L = -1e5, R = 1e5;
    int dp[maxn], a[maxn], b[maxn];
    vector <int> g[maxn];
    void dfs(int u, int f) {
    	for(int v: g[u])
    		if(v ^ f) { dfs(v, u), rt[u] = merge(rt[u], rt[v], L, R); }
    	dp[u] = qry(rt[u], L, R, a[u]);
    	if(dp[u] == 1e18) dp[u] = 0;
    	s[u] = { b[u], dp[u] }, ins(rt[u], L, R, u);
    }
    
    signed main() {
      // code begin.
    	in >> n;
    	rep(i , 1 , n) in >> a[i]; rep(i , 1 , n) in >> b[i];
    	rep(i , 2 , n) { int u, v; in >> u >> v, g[u].pb(v), g[v].pb(u); }
    	dfs(1, 0);
    	rep(i , 1 , n) { out << dp[i] << '
    '; }
      return 0;
      // code end.
    }
    
  • 相关阅读:
    钩子函数和回调函数
    Vue.js的坑
    数据库清空表中的数据
    chrome jsonView插件安装
    PostgreSQL数据的导出导入
    PostgreSQL9.6.2的WINDOWS下安装
    HEXO+Github,搭建属于自己的博客
    Vue.js 入门指南之“前传”(含sublime text 3 配置)
    win系统下nodejs安装及环境配置
    Vue.js学习网址
  • 原文地址:https://www.cnblogs.com/Isaunoya/p/12820485.html
Copyright © 2020-2023  润新知