• 目标检测——深度学习下的小目标检测(检测难的原因和Tricks)


    小目标难检测原因

    主要原因

    (1)小目标在原图中尺寸比较小,通用目标检测模型中,一般的基础骨干神经网络(VGG系列和Resnet系列)都有几次下采样处理,导致小目标在特征图的尺寸基本上只有个位数的像素大小,导致设计的目标检测分类器对小目标的分类效果差。

    (2)小目标在原图中尺寸比较小,通用目标检测模型中,一般的基础骨干神经网络(VGG系列和Resnet系列)都有几次下采样处理,如果分类和回归操作在经过几层下采样处理的 特征层进行,小目标特征的感受野映射回原图将可能大于小目标在原图的尺寸,造成检测效果差。

    其他原因

    (1)小目标在原图中的数量较少,检测器提取的特征较少,导致小目标的检测效果差。

    (2)神经网络在学习中被大目标主导,小目标在整个学习过程被忽视,导致导致小目标的检测效果差。

    Tricks

    (1) data-augmentation.简单粗暴,比如将图像放大,利用 image pyramid多尺度检测,最后将检测结果融合.缺点是操作复杂,计算量大,实际情况中不实用;
    (2) 特征融合方法:FPN这些,多尺度feature map预测,feature stride可以从更小的开始;
    (3)合适的训练方法:CVPR2018的SNIP以及SNIPER;
    (4)设置更小更稠密的anchor,设计anchor match strategy等,参考S3FD;
    (5)利用GAN将小物体放大再检测,CVPR2018有这样的论文;
    (6)利用context信息,简历object和context的联系,比如relation network;
    (7)有密集遮挡,如何把location 和Classification 做的更好,参考IoU loss, repulsion loss等.
    (8)卷积神经网络设计时尽量度采用步长为1,尽可能保留多的目标特征。
     
     
     
     
     
     
     
     
     
  • 相关阅读:
    (兼容IE8)的渐变
    左侧固定,右侧自适应,两列等高并且自适应的第二种办法
    左侧定宽,右侧自适应,两列布局且等高
    下拉框重写
    在页面中输出当前客户端时间
    用哈希表去数组重复项,有详细注释
    求数组最大值、求和、乘法表、取整
    类似新浪微博输入字符计数的效果
    将博客搬至CSDN
    Mysql常用操作
  • 原文地址:https://www.cnblogs.com/E-Dreamer-Blogs/p/11442927.html
Copyright © 2020-2023  润新知