• Distant Supervision for relation extraction without labeled data


    Distant Supervision for relation extraction without labeled data

    远程监督:使用未标注语料做关系抽取

    1. 背景:

        关系抽取(某个人是否属于某个组织等)

        关系抽取中使用的3种方法:

        a) 监督学习

            优点:准确率很高

            缺点:1.手工标注金标语料代价昂贵,时间金钱上需要很大的开销,并且数量受限,得不到大量的训练数据; 2.领域受限,标注都是在一个特定的语料中,训练的系统受限于那个领域

        b) 无监督学习

            优点:可以使用大规模的数据,抽取出大量的关系

            缺点:抽取的结果往往比较难映射到特定的知识库

        c) Bootstrap learning

            往往有低准确率的问题。

        d) 远程监督

            使用知识库(freebase)来获取weekly labeled training data。

            特点:相比监督学习,使用知识库提供训练数据来取代人工标注获取训练数据,没有过拟合的问题和领域依赖的问题;比起无监督,不用解决聚类结果到关系的映射问题,并且使用大规模的训练数据可以得到丰富的特征。

    2. 方法介绍

        基本假设: 如果两个实体是某个关系的参与者,任意的一个包含这两个实体的句子都可能表达了这个关系。

        训练阶段

      1. 使用 NET(named entity tagger)标注 persons organizations 和 locations;
      2. 对在freebase中出现的实体对提取特征,构造训练数据;
      3. 训练多类别逻辑斯特回归模型。

        测试阶段:

      1. 使用 NET(named entity tagger)标注 persons organizations 和 locations
      2. 在句子中出现的每对实体都被考虑做为一个潜在的关系实例,作为测试数据
      3. 使用训练后的模型对实体对分类。

     

    3. 特征选择

        3.1. 词汇特征:

        a) 两个实体中间的词序列;

        b) 这些词的词性标记;

        c) 标志位表示哪个实体出现在前面;

        d) 大小为k的左窗口;

        e) 大小为k的右窗口。

        3.2. 句法特征:

        a) 两个实体之间的最短依存路径;

        b) 两个实体的左右窗口。

        3.3. 命名实体tag特征:

        人名、地名、组织名和其他

    4. 其他注意的地方

        连接特征来丢进多类逻辑斯特回归模型。

     

        负例构造:随机选取不在freebase中的实体对(有错误的可能)

     

        训练和测试数据构造:freebase中的关系实例一半用来训练,另一半用来测试。数据使用维基百科数据,2:1的训练和测试数据分配。测试时只对在训练时未出现(不属于训练时的freebase中)的实例对分类。

     

        测试结果选择:对所有实体对分类,并对每对实体对分配一个分类结果的置信度。然后对它们的置信度排序,选取top n。

  • 相关阅读:
    Linux下find命令详解
    shell if语句
    目标文件系统映像制作工具mkyaffs2image
    编译内核
    FPS含义
    linux下echo命令详解
    Mssql数据库语句综合
    string 字符串操作
    Lession 15 Good news
    Mysql使作心得(备份,还原,乱码处理)
  • 原文地址:https://www.cnblogs.com/Dream-Fish/p/3956890.html
Copyright © 2020-2023  润新知