• Remmarguts' Date(POJ2449+最短路+A*算法)


    题目链接:http://poj.org/problem?id=2449

    题目:

    题意:求有向图两点间的k短路。

    思路:最短路+A*算法

    代码实现如下:

      1 #include <set>
      2 #include <map>
      3 #include <queue>
      4 #include <stack>
      5 #include <cmath>
      6 #include <bitset>
      7 #include <cstdio>
      8 #include <string>
      9 #include <vector>
     10 #include <cstdlib>
     11 #include <cstring>
     12 #include <iostream>
     13 #include <algorithm>
     14 using namespace std;
     15 
     16 typedef long long ll;
     17 typedef unsigned long long ull;
     18 
     19 #define lson i<<1
     20 #define rson i<<1|1
     21 #define bug printf("*********
    ");
     22 #define FIN freopen("D://code//in.txt", "r", stdin);
     23 #define debug(x) cout<<"["<<x<<"]" <<endl;
     24 #define IO ios::sync_with_stdio(false),cin.tie(0);
     25 
     26 const double eps = 1e-8;
     27 const int mod = 10007;
     28 const int maxn = 1e5 + 7;
     29 const double pi = acos(-1);
     30 const int inf = 0x3f3f3f3f;
     31 const ll INF = 0x3f3f3f3f3f3f3f;
     32 
     33 inline int read() {//读入挂
     34     int ret = 0, c, f = 1;
     35     for(c = getchar(); !(isdigit(c) || c == '-'); c = getchar());
     36     if(c == '-') f = -1, c = getchar();
     37     for(; isdigit(c); c = getchar()) ret = ret * 10 + c - '0';
     38     if(f < 0) ret = -ret;
     39     return ret;
     40 }
     41 
     42 int n, m, s, t, u, v, w, k, tot;
     43 int d[maxn<<1], cnt[maxn<<1], vis[maxn<<1];
     44 int head[maxn<<1], head1[maxn<<1];
     45 pair<int, int> P;
     46 
     47 struct b {
     48     int v, w, next;
     49 }biao[maxn<<1];
     50 
     51 struct node {
     52     int g, h;
     53     int to;
     54     bool operator < (node a) const {
     55         return (a.h + a.g) < h + g;
     56     }
     57 };
     58 
     59 void add(int u, int v, int w) {
     60     biao[tot].v = v;
     61     biao[tot].w = w;
     62     biao[tot].next = head[u];
     63     head[u] = tot++;
     64 
     65     biao[tot].v = u;
     66     biao[tot].w = w;
     67     biao[tot].next = head1[v];
     68     head1[v] = tot++;
     69 }
     70 
     71 void init() {
     72     tot = 0;
     73     memset(head, -1, sizeof(head));
     74     memset(head1, -1, sizeof(head1));
     75 }
     76 
     77 void spfa() {
     78     memset(vis, 0, sizeof(vis));
     79     memset(d, inf, sizeof(d));
     80     d[t] = 0;
     81     vis[t] = 1;
     82     queue<int> q;
     83     q.push(t);
     84     while(!q.empty()) {
     85         int u = q.front();
     86         q.pop();
     87         vis[u] = 0;
     88         for(int i = head1[u]; i != -1; i = biao[i].next) {
     89             int v = biao[i].v;
     90             if(d[v] > d[u] + biao[i].w) {
     91                 d[v] = d[u] + biao[i].w;
     92                 if(!vis[v]) {
     93                     q.push(v);
     94                     vis[v] = 1;
     95                 }
     96             }
     97         }
     98     }
     99 }
    100 
    101 int AA() {
    102     memset(cnt, 0, sizeof(cnt));
    103     priority_queue<node> Q;
    104     node p, q;
    105     p.g = 0;
    106     p.h = d[s];
    107     p.to = s;
    108     Q.push(p);
    109     while(!Q.empty()) {
    110         p = Q.top(), Q.pop();
    111         cnt[p.to]++;
    112         if(cnt[p.to] > k) continue;
    113         if(cnt[t] == k) return p.g;
    114         int u = p.to;
    115         for(int i = head[u]; i != -1; i = biao[i].next) {
    116             int v = biao[i].v;
    117             q.to = v;
    118             q.g = p.g + biao[i].w;
    119             q.h = d[v];
    120             Q.push(q);
    121         }
    122     }
    123     return -1;
    124 }
    125 
    126 int main() {
    127     //FIN;
    128     scanf("%d%d", &n, &m);
    129     init();
    130     while(m--) {
    131         scanf("%d%d%d", &u, &v, &w);
    132         add(u, v, w);
    133     }
    134     scanf("%d%d%d", &s, &t, &k);
    135     spfa();
    136     if(s == t) k++;
    137     int ans = AA();
    138     printf("%d
    ", ans);
    139     return 0;
    140 }
  • 相关阅读:
    MYSQL关于数据库的操作命令
    理解js中的原型和原型链
    float引起的高度塌陷问题
    使用webpack2.0 搭建前端项目
    jquery插件开发总结
    js中的OOP编程
    关于gulp的基本使用
    关于requireJs的学习总结
    vuex的学习总结
    事件中的target与currentTarget的区别
  • 原文地址:https://www.cnblogs.com/Dillonh/p/9379259.html
Copyright © 2020-2023  润新知