100. Same Tree
Given two binary trees, write a function to check if they are the same or not.
Two binary trees are considered the same if they are structurally identical and the nodes have the same value.
Example 1:
Input: 1 1 / / 2 3 2 3 [1,2,3], [1,2,3] Output: true
Example 2:
Input: 1 1 / 2 2 [1,2], [1,null,2] Output: false
Example 3:
Input: 1 1 / / 2 1 1 2 [1,2,1], [1,1,2] Output: false
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def isSameTree(self, p, q): """ :type p: TreeNode :type q: TreeNode :rtype: bool """ return p.val==q.val and self.isSameTree(p.left, q.left) and self.isSameTree(p.right, q.right) if p and q else p is q # one liner
104. Maximum Depth of Binary Tree
Given a binary tree, find its maximum depth.
The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def maxDepth(self, root): """ :type root: TreeNode :rtype: int """ if(root is None): return 0 return max(self.maxDepth(root.left),self.maxDepth(root.right))+1
107. Binary Tree Level Order Traversal II
Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from left to right, level by level from leaf to root).
For example:
Given binary tree [3,9,20,null,null,15,7]
,
3 / 9 20 / 15 7
return its bottom-up level order traversal as:
[ [15,7], [9,20], [3] ]
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def levelOrderBottom(self, root): """ :type root: TreeNode :rtype: List[List[int]] """ res, queue = [], [root] while queue: res.append([node.val for node in queue if node]) queue = [child for node in queue if node for child in (node.left, node.right)] return res[-2::-1] # elements in each layer should be contained in a list # res[-2::-1] will reverse the list res[0:-2]
108. Convert Sorted Array to Binary Search Tree
Given an array where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example:
Given the sorted array: [-10,-3,0,5,9], One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST: 0 / -3 9 / / -10 5
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def sortedArrayToBST(self, nums): """ :type nums: List[int] :rtype: TreeNode """ if not nums: return None mid = len(nums) // 2 root = TreeNode(nums[mid]) root.left = self.sortedArrayToBST(nums[:mid]) root.right = self.sortedArrayToBST(nums[mid+1:]) return root # !!!!! when a == [] , a is not None !!!!!!!!!!
111. Minimum Depth of Binary Tree
Given a binary tree, find its minimum depth.
The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def minDepth(self, root): """ :type root: TreeNode :rtype: int """ if(root is None): return 0 if(root.left is None and root.right is None): return 1 if(root.left is None or root.right is None): return (max(self.minDepth(root.left),self.minDepth(root.right))+1) else: return (min(self.minDepth(root.left),self.minDepth(root.right))+1) # a bit more difficult than the maxDepth one
110. Balanced Binary Tree
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def isBalanced(self, root): """ :type root: TreeNode :rtype: bool """ def depth(root): if root is None: return 0 dep_l = depth(root.left) dep_r = depth(root.right) if dep_l == -1 or dep_r == -1 or abs(dep_l - dep_r)>1: return -1 return max(dep_l, dep_r)+1 return depth(root) != -1 # use a special number as a sign of unqualified tree
112. Path Sum
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.
For example:
Given the below binary tree and sum = 22
,
5 / 4 8 / / 11 13 4 / 7 2 1
return true, as there exist a root-to-leaf path 5->4->11->2
which sum is 22.
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def hasPathSum(self, root, sum): """ :type root: TreeNode :type sum: int :rtype: bool """ if root is None: return False if root.left is None and root.right is None and sum == root.val: return True return self.hasPathSum(root.left,sum-root.val) or self.hasPathSum(root.right,sum-root.val)