This is a program based on Knuth-Morris-Pratt String Matching Algorithm (a.k.a KMP algorithm), which can be tapped to solve the problem POJ 3461.
1 import java.io.*; 2 import java.util.*; 3 4 class Input { 5 private Scanner in; 6 private StringTokenizer tok; 7 8 public Input() { 9 in = new Scanner(new BufferedInputStream(System.in)); 10 } 11 public String nextString() { 12 while (tok==null||!tok.hasMoreTokens()) { 13 tok = new StringTokenizer(in.nextLine()); 14 } 15 return tok.nextToken(); 16 } 17 public int nextInt() { 18 while (tok==null||!tok.hasMoreTokens()) { 19 tok = new StringTokenizer(in.nextLine()); 20 } 21 return Integer.parseInt(tok.nextToken()); 22 } 23 public double nextDouble() { 24 while (tok==null||!tok.hasMoreTokens()) { 25 tok = new StringTokenizer(in.nextLine()); 26 } 27 return Double.parseDouble(tok.nextToken()); 28 } 29 public void close() { 30 in.close(); 31 } 32 } 33 34 public class Main { 35 36 public static int[] preproc(String pattern) { 37 int[] dp = new int[pattern.length()]; 38 Arrays.fill(dp,-1); 39 for (int i=1;i<pattern.length();i++) { 40 for (int j=i-1;j>=0;j=dp[j]) { 41 if (pattern.charAt(dp[j]+1)==pattern.charAt(i)) { 42 dp[i] = dp[j]+1; 43 break; 44 } 45 } 46 } 47 return dp; 48 } 49 public static int match(String pattern,String test) { 50 int[] next = preproc(pattern); 51 int cnt = 0; 52 for (int i=0,j=0;i<test.length();) { 53 if (test.charAt(i)==pattern.charAt(j)) { 54 ++i; 55 if (++j==pattern.length()) { 56 cnt++; 57 j = next[j-1]+1; 58 } 59 } else if (j>0) { 60 j = next[j-1]+1; 61 } else { 62 i++; 63 } 64 } 65 return cnt; 66 } 67 public static void main(String[] args) { 68 Input in = new Input(); 69 int time = in.nextInt(); 70 for (int t=0;t<time;t++) { 71 System.out.println(match(in.nextString(),in.nextString())); 72 } 73 in.close(); 74 } 75 }