Here, I would like to use Ford-Fulkerson Method to determine the Maximum Flow of a given directed graph in the USACO training problem Drainage Ditches:
1 import java.util.*; 2 import java.io.*; 3 4 public class ditch { 5 public static final int INF = (1<<30); 6 public static Scanner in; 7 public static PrintWriter out; 8 public static int num; // number of vertices 9 public static int[][] adjMat; // residual matrix 10 public static int[] path; // record of augmented path 11 public static int len; // length of augmented path 12 13 public static int maxFlow() { 14 // Implementation of the Ford-Fulkerson Method 15 int val = 0; 16 while (genAugPath()) { 17 // Whenever an augmented path is discovered 18 // the capacity of it will be added to the flow 19 int min = INF; 20 for (int i=0;i<len-1;i++) { 21 // Determine the capacity of the path 22 if (adjMat[path[i+1]][path[i]]<min) 23 min = adjMat[path[i+1]][path[i]]; 24 } 25 for (int i=0;i<len-1;i++) { 26 // Modify the residual matrix 27 adjMat[path[i+1]][path[i]]-=min; 28 adjMat[path[i]][path[i+1]]+=min; 29 } 30 val += min; 31 } 32 return val; 33 } 34 public static boolean genAugPath() { 35 // Breadth-First Search for an augmented path 36 // return whether a path has been found 37 boolean[] vis = new boolean[num]; 38 Queue<Integer> q= new LinkedList<Integer>(); 39 int[] prev = new int[num]; 40 vis[0] = true; 41 q.add(new Integer(0)); 42 prev[0] = -1; 43 while (!q.isEmpty()){ 44 int k = q.poll().intValue(); 45 for (int i=1;i<num-1;i++) { 46 if (!vis[i]&&adjMat[k][i]>0) { 47 vis[i] = true; 48 q.add(new Integer(i)); 49 prev[i] = k; 50 } 51 } 52 if (adjMat[k][num-1]>0) { 53 // When destination is reached, 54 // an augmented path is found 55 len = 0; 56 path[len++] = num-1; 57 int idx = k; 58 while (idx>=0) { 59 path[len++] = idx; 60 idx = prev[idx]; 61 } 62 return true; 63 } 64 } 65 return false; 66 } 67 public static void main(String[] args) throws IOException{ 68 in = new Scanner(new FileReader("ditch.in")); 69 int n = in.nextInt(); 70 num = in.nextInt(); 71 adjMat = new int[num][num]; 72 for (int i=0;i<n;i++) { 73 adjMat[in.nextInt()-1][in.nextInt()-1] += in.nextInt(); 74 } 75 in.close(); 76 out = new PrintWriter(new FileWriter("ditch.out")); 77 path = new int[num]; 78 out.println(maxFlow()); 79 out.close(); 80 } 81 }