设计模式--设计原则
重新认识面向对象
-
理解隔离变化
- 从宏观层面来看,面向对象的构建方式更能适应软件的变化,能将变化所带来的影响减为最小
-
各司其职
-
从微观层面来看,面向对象的方式更强调各个类的“责任”
-
由于需求变化导致的新增类型不应该影响原来类型的实现—— 是所谓各负其责
-
-
对象是什么?
-
从语言实现层面来看,对象封装了代码和数据。
-
从规格层面讲,对象是一系列可被使用的公共接口。
-
从概念层面讲,对象是某种拥有责任的抽象。
-
面向对象的8大设计原则
1:依赖倒置原则(DIP)
- 高层模块(稳定)不应该依赖于低层模块(变化),二者都应该依赖于抽象(稳定) 。
- 抽象(稳定)不应该依赖于实现细节(变化) ,实现细节应该依赖于抽象(稳定)。
2:开放封闭原则(OCP)
- 对扩展开放,对更改封闭。
- 类模块应该是可扩展的,但是不可修改。
3:单一职责原则(SRP)
- 一个类应该仅有一个引起它变化的原因。
- 变化的方向隐含着类的责任。
4:Liskov 替换原则(LSP)
- 子类必须能够替换它们的基类(IS-A)。
- 继承表达类型抽象。
5:接口隔离原则(ISP)
- 不应该强迫客户程序依赖它们不用的方法。
- 接口应该小而完备。
6:优先使用对象组合,而不是类继承
- 类继承通常为“白箱复用”,对象组合通常为“黑箱复用”。
- 继承在某种程度上破坏了封装性,子类父类耦合度高。
- 而对象组合则只要求被组合的对象具有良好定义的接口,耦合度低。
7:封装变化点
- 使用封装来创建对象之间的分界层,让设计者可以在分界层的 一侧进行修改,而不会对另一侧产生不良的影响,从而实现层次间的松耦合。
8:针对接口编程,而不是针对实现编程
- 不将变量类型声明为某个特定的具体类,而是声明为某个接口。
- 客户程序无需获知对象的具体类型,只需要知道对象所具有的 接口。
- 减少系统中各部分的依赖关系,从而实现“高内聚、松耦合”的类型设计方案。
GOF-23 模式分类
从目的来看:
• 创建型(Creational)模式:将对象的部分创建工作延迟到子 类或者其他对象,从而应对需求变化为对象创建具体类型实现引来的冲击。
• 结构型(Structural)模式:通过类继承或者对象组合获得更灵活的结构,从而应对需求变化为对象的结构带来的冲击。
• 行为型(Behavioral)模式:通过类继承或者对象组合来划分类与对象间的职责,从而应对需求变化为多个交互的对象带来的冲击。
从范围来看:
• 类模式处理类与子类的静态关系。
• 对象模式处理对象间的动态关系。
从封装变化角度对模式分类
组件协作:
• Template Method
• Observer / Event
• Strategy
单一职责:
• Decorator
• Bridge
对象创建:
• Factory Method
• Abstract Factory
• Prototype
• Builder
对象性能:
• Singleton
• Flyweight
接口隔离:
• Façade
• Proxy
• Mediator
• Adapter
状态变化:
• Memento
• State
数据结构:
• Composite
• Iterator
• Chain of Resposibility
行为变化:
• Command
• Visitor
领域问题:
• Interpreter
重构获得模式 Refactoring to Patterns
面向对象设计模式是“好的面向对象设计”,所谓“好的面向对象设计”指是那些可以满足 “应对变化,提高复用”的设计 。
现代软件设计的特征是“需求的频繁变化”。设计模式的要点是“寻找变化点,然后在变化点处应用设计模式,从而来更好地应对需求的变化”.“什么时候、什么地点应用设计模式”比“理解设计模式结构本身”更为重要。
设计模式的应用不宜先入为主,一上来就使用设计模式是对设计模式的最大误用。没有一步到位的设计模式。敏捷软件开发实践提倡的“Refactoring to Patterns”是目前普遍公认的最好的使用设计模式的方法。
重构关键技法
静态 -->动态
早绑定 --> 晚绑定
继承 --> 组合
编译时依赖 --> 运行时依赖
紧耦合 --> 松耦合
示例代码
不好的代码设计
MainForm1.cpp
class MainForm : public Form {
private:
Point p1;
Point p2;
vector<Line> lineVector;
vector<Rect> rectVector;
//改变
vector<Circle> circleVector;
public:
MainForm(){
//...
}
protected:
virtual void OnMouseDown(const MouseEventArgs& e);
virtual void OnMouseUp(const MouseEventArgs& e);
virtual void OnPaint(const PaintEventArgs& e);
};
void MainForm::OnMouseDown(const MouseEventArgs& e){
p1.x = e.X;
p1.y = e.Y;
//...
Form::OnMouseDown(e);
}
void MainForm::OnMouseUp(const MouseEventArgs& e){
p2.x = e.X;
p2.y = e.Y;
if (rdoLine.Checked){
Line line(p1, p2);
lineVector.push_back(line);
}
else if (rdoRect.Checked){
int width = abs(p2.x - p1.x);
int height = abs(p2.y - p1.y);
Rect rect(p1, width, height);
rectVector.push_back(rect);
}
//改变
else if (...){
//...
circleVector.push_back(circle);
}
//...
this->Refresh();
Form::OnMouseUp(e);
}
void MainForm::OnPaint(const PaintEventArgs& e){
//针对直线
for (int i = 0; i < lineVector.size(); i++){
e.Graphics.DrawLine(Pens.Red,
lineVector[i].start.x,
lineVector[i].start.y,
lineVector[i].end.x,
lineVector[i].end.y);
}
//针对矩形
for (int i = 0; i < rectVector.size(); i++){
e.Graphics.DrawRectangle(Pens.Red,
rectVector[i].leftUp,
rectVector[i].width,
rectVector[i].height);
}
//改变
//针对圆形
for (int i = 0; i < circleVector.size(); i++){
e.Graphics.DrawCircle(Pens.Red,
circleVector[i]);
}
//...
Form::OnPaint(e);
}
Shape1.h
class Point{
public:
int x;
int y;
};
class Line{
public:
Point start;
Point end;
Line(const Point& start, const Point& end){
this->start = start;
this->end = end;
}
};
class Rect{
public:
Point leftUp;
int width;
int height;
Rect(const Point& leftUp, int width, int height){
this->leftUp = leftUp;
this->width = width;
this->height = height;
}
};
//增加
class Circle{
};
该设计的缺陷
- 当加入需要画园的需求的时候,需要大面积更改源码,主要违背封闭原则。
优化代码结构
MainForm2.cpp
class MainForm : public Form {
private:
Point p1;
Point p2;
//针对所有形状
vector<Shape*> shapeVector;
public:
MainForm(){
//...
}
protected:
virtual void OnMouseDown(const MouseEventArgs& e);
virtual void OnMouseUp(const MouseEventArgs& e);
virtual void OnPaint(const PaintEventArgs& e);
};
void MainForm::OnMouseDown(const MouseEventArgs& e){
p1.x = e.X;
p1.y = e.Y;
//...
Form::OnMouseDown(e);
}
void MainForm::OnMouseUp(const MouseEventArgs& e){
p2.x = e.X;
p2.y = e.Y;
if (rdoLine.Checked){
shapeVector.push_back(new Line(p1,p2));
}
else if (rdoRect.Checked){
int width = abs(p2.x - p1.x);
int height = abs(p2.y - p1.y);
shapeVector.push_back(new Rect(p1, width, height));
}
//改变
else if (...){
//...
shapeVector.push_back(circle);
}
//...
this->Refresh();
Form::OnMouseUp(e);
}
void MainForm::OnPaint(const PaintEventArgs& e){
//针对所有形状
for (int i = 0; i < shapeVector.size(); i++){
shapeVector[i]->Draw(e.Graphics); //多态调用,各负其责
}
//...
Form::OnPaint(e);
}
Shape2.h
class Shape{
public:
virtual void Draw(const Graphics& g)=0;
virtual ~Shape() { }
};
class Point{
public:
int x;
int y;
};
class Line: public Shape{
public:
Point start;
Point end;
Line(const Point& start, const Point& end){
this->start = start;
this->end = end;
}
//实现自己的Draw,负责画自己
virtual void Draw(const Graphics& g){
g.DrawLine(Pens.Red,
start.x, start.y,end.x, end.y);
}
};
class Rect: public Shape{
public:
Point leftUp;
int width;
int height;
Rect(const Point& leftUp, int width, int height){
this->leftUp = leftUp;
this->width = width;
this->height = height;
}
//实现自己的Draw,负责画自己
virtual void Draw(const Graphics& g){
g.DrawRectangle(Pens.Red,
leftUp,width,height);
}
};
class Circle : public Shape{
public:
//实现自己的Draw,负责画自己
virtual void Draw(const Graphics& g){
g.DrawCircle(Pens.Red,
...);
}
};
优势分析
- 通过添加一个基类
Shape
并在中添加画这个动作的纯虚函数virtual void Draw(const Graphics& g)=0;
,之后所有的形状都继承该基类Shape
各自实现自己对应的画的动作,在MainForm::OnPaint(const PaintEventArgs& e)
函数中进行循环多态调用shapeVector[i]->Draw(e.Graphics);
- 该设计的基类
Shape
是个稳定的抽象的接口,之后所有的子类都依赖该基类,满足依赖倒置原则,封闭原则,等。