ZOJ Problem Set - 4053
DreamGrid has an array of integers. On this array he can perform the following operation: choose an element that was not previously chosen and mark it as unavailable. DreamGrid would like to perform exactly operations until all the elements are marked.
DreamGrid defines the cost of a subarray as the number of inversions in the subarray. Before performing an operation, DreamGrid would like to know the maximum cost of a subarray that doesn't contain any unavailable elements.
Recall that a subarray is a contiguous subpart of the original array where . An inversion in a subarray is a pair of indices such that the inequality holds.
Input
There are multiple test cases. The first line of input contains an integer , indicating the number of test cases. For each test case:
The first line contains a single integer -- the length of the array.
The second line contains the values of the array .
The third line contains a permutation , representing the indices of the elements chosen for the operations in order.
Note that the permutation is encrypted and you can get the real permutation using the following method: Let be the answer before the -th operation. The actual index of the -th operation is where is bitwise exclusive or operator.
It is guaranteed that the sum of all does not exceed .
Output
For each test case, output integers in a single line seperated by one space, where is the answer before the -th operation.
Please, DO NOT output extra spaces at the end of each line, or your answer may be considered incorrect!
Sample Input
354 3 1 1 15 4 5 3 1109 7 1 4 7 8 5 7 4 821 8 15 5 9 2 4 5 10 6154 8 8 1 12 1 10 14 7 14 2 9 13 10 337 19 23 15 7 2 10 15 2 13 4 5 8 7 10Sample Output
7 0 0 0 020 11 7 2 0 0 0 0 0 042 31 21 14 14 4 1 1 1 0 0 0 0 0 0Hint
The decoded permutation of each test case is , and
Author: LIN, Xi
Source: The 2018 ACM-ICPC Asia Qingdao Regional Contest, Online
题目大意 给一个序列 然后按照一定顺序 删掉一些数字 使得序列不连续 要让我们去找出 逆序数最大的连续序列 输出这个连续序列的逆序对数
本蒟蒻在做这个题目的时候 用的set维护的最大的逆序数
QAQ 一直都不对 这个题目要用muliset 维护啊 qaq qaq qaq qaq qaq
有关这个逆序数的关系传递 值得思考
#include<iostream> #include<stdio.h> #include<algorithm> #include<cstring> #include<vector> #include<set> using namespace std; const int maxn = 1e5+7; #define ll long long struct tree{int l,r,sum;}T[maxn*40]; int a[maxn],p[maxn],root[maxn],N;ll z[maxn],big[maxn],cnt; void update(int &x,int y,int l,int r,int pos) { T[++cnt]=T[y],x=cnt,T[x].sum++; if(l==r)return; int m=(l+r)>>1; if(pos<=m)update(T[x].l,T[y].l,l,m,pos); else update(T[x].r,T[y].r,m+1,r,pos); } ll findbig(int x,int y,int l,int r,int pos) { if(l==r)return 0; int m=(l+r)>>1; if(pos<=m)return findbig(T[x].l,T[y].l,l,m,pos)+T[T[y].r].sum-T[T[x].r].sum; return findbig(T[x].r,T[y].r,m+1,r,pos); } ll findsmall(int x,int y,int l,int r,int pos) { if(l==r)return 0; int m=(l+r)>>1; if(pos<=m)return findsmall(T[x].l,T[y].l,l,m,pos); return findsmall(T[x].r,T[y].r,m+1,r,pos)+T[T[y].l].sum-T[T[x].l].sum; } set<int>se; multiset<ll>Maxinv; set<int>::iterator it; ll delet(int x) { se.insert(x);it=se.find(x); int l=*(--it) +1;++it;int r=*(++it) -1; if(big[r])Maxinv.erase(Maxinv.find(big[r])); ll invl=0,invr=0,t=0; if(x-l<r-x) { for(int i=l;i<x;i++) { invl+=findbig(root[l-1],root[i],1,N,a[i]); t+=findsmall(root[i],root[r],1,N,a[i]); } invr=big[r]-t-findsmall(root[x],root[r],1,N,a[x]); }else{ for(int i=x+1;i<=r;i++) { invr+=findsmall(root[i],root[r],1,N,a[i]); t+=findbig(root[l-1],root[i],1,N,a[i]); } invl=big[r]-t-findbig(root[l-1],root[x],1,N,a[x]); } big[x-1]=invl;big[r]=invr; if(invl)Maxinv.insert(invl);if(invr)Maxinv.insert(invr); multiset<ll>::iterator its=Maxinv.end(); return *(--its); } int main() { int T; scanf("%d",&T); while(T--) { se.clear();cnt=0;Maxinv.clear();Maxinv.insert(0); scanf("%d",&N);se.insert(0),se.insert(N+1); for(int i=1;i<=N;i++)scanf("%d",a+i); for(int i=1;i<=N;i++)scanf("%d",p+i); for(int i=1;i<=N;i++)update(root[i],root[i-1],1,N,a[i]); for(int i=1;i<=N;i++)big[i]=big[i-1]+findbig(root[0],root[i],1,N,a[i]); z[1]=big[N];Maxinv.insert(z[1]); for(int i=1;i<N;i++)z[i+1]=delet(z[i]^p[i]); for(int i=1;i<N;i++)printf("%lld ",z[i]); printf("%lld ",z[N]); } return 0; }