• HDU5950 Recursive sequence —— 矩阵快速幂


    题目链接:https://vjudge.net/problem/HDU-5950

    Recursive sequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 2727    Accepted Submission(s): 1226


    Problem Description
    Farmer John likes to play mathematics games with his N cows. Recently, they are attracted by recursive sequences. In each turn, the cows would stand in a line, while John writes two positive numbers a and b on a blackboard. And then, the cows would say their identity number one by one. The first cow says the first number a and the second says the second number b. After that, the i-th cow says the sum of twice the (i-2)-th number, the (i-1)-th number, and i4. Now, you need to write a program to calculate the number of the N-th cow in order to check if John’s cows can make it right. 
     
    Input
    The first line of input contains an integer t, the number of test cases. t test cases follow.
    Each case contains only one line with three numbers N, a and b where N,a,b < 231 as described above.
     
    Output
    For each test case, output the number of the N-th cow. This number might be very large, so you need to output it modulo 2147493647.
     
    Sample Input
    2 3 1 2 4 1 10
     
    Sample Output
    85 369
    Hint
    In the first case, the third number is 85 = 2*1十2十3^4. In the second case, the third number is 93 = 2*1十1*10十3^4 and the fourth number is 369 = 2 * 10 十 93 十 4^4.
     
    Source
     
    Recommend
    jiangzijing2015
     

    题意:

    求 f(n) = f(n−1) + 2*f(n−2) + n^4,其中 f(1)=a,f(2)=b

    题解:

    典型的矩阵快速幂的运用。关键是i^4怎么维护?我们可以当成求第i+1项,那么i^4就变成了(i+1)^4。那么这时我们可以用二项式定理从i^4、i^3、i^2、i^1、i^0的组合中得到(i+1)^4。也就是说总共需要维护:f[i+1]、f[i]、(i+1)^4、(i+1)^3、(i+1)^2、(i+1)^1、(i+1)^0。矩阵如下:






    代码如下:

     1 #include <bits/stdc++.h>
     2 #define rep(i,s,t) for(int (i)=(s); (i)<=(t); (i)++)
     3 #define ms(a,b) memset((a),(b),sizeof((a)))
     4 using namespace std;
     5 typedef long long LL;
     6 const LL mod = 2147493647;
     7 const int maxn = 1e5;
     8 
     9 struct Mat
    10 {
    11     LL mat[7][7];
    12     void init()
    13     {
    14         rep(i,0,6) rep(j,0,6)
    15             mat[i][j] = (i==j);
    16     }
    17 };
    18 
    19 Mat p = {   1, 2, 1, 4, 6, 4, 1,
    20             1, 0, 0, 0, 0, 0, 0,
    21             0, 0, 1, 4, 6, 4, 1,
    22             0, 0, 0, 1, 3, 3, 1,
    23             0, 0, 0, 0, 1, 2, 1,
    24             0, 0, 0, 0, 0, 1, 1,
    25             0, 0, 0, 0 ,0, 0, 1
    26         };
    27 
    28 Mat mul(Mat x, Mat y)
    29 {
    30     Mat s;
    31     ms(s.mat,0);
    32     rep(i,0,6) rep(j,0,6) rep(k,0,6)
    33         s.mat[i][j] += (x.mat[i][k]*y.mat[k][j])%mod, s.mat[i][j] %= mod;
    34     return s;
    35 }
    36 
    37 Mat qpow(Mat x, LL y)
    38 {
    39     Mat s;
    40     s.init();
    41     while(y)
    42     {
    43         if(y&1)  s = mul(s, x);
    44         x = mul(x, x);
    45         y >>= 1;
    46     }
    47     return s;
    48 }
    49 int main()
    50 {
    51     int T;
    52     scanf("%d",&T);
    53     while(T--)
    54     {
    55         LL n, a, b;
    56         scanf("%lld%lld%lld",&n,&a,&b);
    57         if(n == 1)
    58         {
    59             printf("%lld
    ",a);
    60             continue;
    61         }
    62         if(n == 2)
    63         {
    64             printf("%lld
    ",b);
    65             continue;
    66         }
    67 
    68         Mat x = p;
    69         x = qpow(x, n-2);
    70 
    71         LL ans = 0;
    72         ans = (ans + b*x.mat[0][0]) % mod;
    73         ans = (ans + a*x.mat[0][1]%mod) % mod;
    74         ans = (ans + 16*x.mat[0][2]%mod) % mod;
    75         ans = (ans + 8*x.mat[0][3]%mod) % mod;
    76         ans = (ans + 4*x.mat[0][4]%mod) % mod;
    77         ans = (ans + 2*x.mat[0][5]%mod) % mod;
    78         ans = (ans+x.mat[0][6]) % mod;
    79         printf("%lld
    ",ans);
    80     }
    81 }
    View Code


  • 相关阅读:
    React Native从入门到放弃之坑总结
    React Native从入门到放弃之环境搭建
    flex弹性布局语法介绍及使用
    JavaScript ES6中export及export default的区别
    解决webstorm本地IP访问页面出错的问题
    UEFI+GPT与BIOS+MBR各自有什么优缺点?
    解决U盘拷贝时提示文件过大问题(不能拷贝超过4个g的文件)
    U盘安装原版Win7或Win8教程
    安装win8/win10提示无法在驱动器0分区上安装windows解决方法
    idea 编译报错 未结束的字符串字面值,非法的类型开始
  • 原文地址:https://www.cnblogs.com/DOLFAMINGO/p/7538632.html
Copyright © 2020-2023  润新知