题目链接:https://vjudge.net/problem/HDU-5950
Recursive sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2727 Accepted Submission(s): 1226
Problem Description
Farmer John likes to play mathematics games with his N cows. Recently, they are attracted by recursive sequences. In each turn, the cows would stand in a line, while John writes two positive numbers a and b on a blackboard. And then, the cows would say their identity number one by one. The first cow says the first number a and the second says the second number b. After that, the i-th cow says the sum of twice the (i-2)-th number, the (i-1)-th number, and i4. Now, you need to write a program to calculate the number of the N-th cow in order to check if John’s cows can make it right.
Input
The first line of input contains an integer t, the number of test cases. t test cases follow.
Each case contains only one line with three numbers N, a and b where N,a,b < 231 as described above.
Each case contains only one line with three numbers N, a and b where N,a,b < 231 as described above.
Output
For each test case, output the number of the N-th cow. This number might be very large, so you need to output it modulo 2147493647.
Sample Input
2
3 1 2
4 1 10
Sample Output
85
369
Hint
In the first case, the third number is 85 = 2*1十2十3^4.
In the second case, the third number is 93 = 2*1十1*10十3^4 and the fourth number is 369 = 2 * 10 十 93 十 4^4.Source
Recommend
jiangzijing2015
题意:
求 f(n) = f(n−1) + 2*f(n−2) + n^4,其中 f(1)=a,f(2)=b
题解:
典型的矩阵快速幂的运用。关键是i^4怎么维护?我们可以当成求第i+1项,那么i^4就变成了(i+1)^4。那么这时我们可以用二项式定理从i^4、i^3、i^2、i^1、i^0的组合中得到(i+1)^4。也就是说总共需要维护:f[i+1]、f[i]、(i+1)^4、(i+1)^3、(i+1)^2、(i+1)^1、(i+1)^0。矩阵如下:
代码如下:
1 #include <bits/stdc++.h> 2 #define rep(i,s,t) for(int (i)=(s); (i)<=(t); (i)++) 3 #define ms(a,b) memset((a),(b),sizeof((a))) 4 using namespace std; 5 typedef long long LL; 6 const LL mod = 2147493647; 7 const int maxn = 1e5; 8 9 struct Mat 10 { 11 LL mat[7][7]; 12 void init() 13 { 14 rep(i,0,6) rep(j,0,6) 15 mat[i][j] = (i==j); 16 } 17 }; 18 19 Mat p = { 1, 2, 1, 4, 6, 4, 1, 20 1, 0, 0, 0, 0, 0, 0, 21 0, 0, 1, 4, 6, 4, 1, 22 0, 0, 0, 1, 3, 3, 1, 23 0, 0, 0, 0, 1, 2, 1, 24 0, 0, 0, 0, 0, 1, 1, 25 0, 0, 0, 0 ,0, 0, 1 26 }; 27 28 Mat mul(Mat x, Mat y) 29 { 30 Mat s; 31 ms(s.mat,0); 32 rep(i,0,6) rep(j,0,6) rep(k,0,6) 33 s.mat[i][j] += (x.mat[i][k]*y.mat[k][j])%mod, s.mat[i][j] %= mod; 34 return s; 35 } 36 37 Mat qpow(Mat x, LL y) 38 { 39 Mat s; 40 s.init(); 41 while(y) 42 { 43 if(y&1) s = mul(s, x); 44 x = mul(x, x); 45 y >>= 1; 46 } 47 return s; 48 } 49 int main() 50 { 51 int T; 52 scanf("%d",&T); 53 while(T--) 54 { 55 LL n, a, b; 56 scanf("%lld%lld%lld",&n,&a,&b); 57 if(n == 1) 58 { 59 printf("%lld ",a); 60 continue; 61 } 62 if(n == 2) 63 { 64 printf("%lld ",b); 65 continue; 66 } 67 68 Mat x = p; 69 x = qpow(x, n-2); 70 71 LL ans = 0; 72 ans = (ans + b*x.mat[0][0]) % mod; 73 ans = (ans + a*x.mat[0][1]%mod) % mod; 74 ans = (ans + 16*x.mat[0][2]%mod) % mod; 75 ans = (ans + 8*x.mat[0][3]%mod) % mod; 76 ans = (ans + 4*x.mat[0][4]%mod) % mod; 77 ans = (ans + 2*x.mat[0][5]%mod) % mod; 78 ans = (ans+x.mat[0][6]) % mod; 79 printf("%lld ",ans); 80 } 81 }