• 操作系统简介


    操作系统简介

    为何要有操作系统
        操作系统的位置
        操作系统的功能
        操作系统的发展
        多道技术

    一 为什么要有操作系统

    一台电脑为什么要有操作系统,好比你买了一个毛坯房,你得装修吧,不装修你能住么,不能吧,所以操作系统就是这中起到承上启下的作用。应用软件的诞生就是为了操控硬件去工作,解放劳动力,而如果一个应用程序开发人员去先了解硬件的基础,工作原理,再来编写软件,那个这个时间需要多久,所以为了减少软件开发人员的辛苦,操作系统应运而生了。计算安装了一层软件(系统软件),称为操作系统。它的任务就是为用户程序提供一个更好、更简单、更清晰的计算机模型,并管理刚才提到的所有设备。

    总结:程序员无法把所有的硬件操作细节都了解到,管理这些硬件并且加以优化使用是非常繁琐的工作,这个繁琐的工作就是操作系统来干的,有了他,程序员就从这些繁琐的工作中解脱了出来,只需要考虑自己的应用软件的编写就可以了,应用软件直接使用操作系统提供的功能来间接使用硬件。

     

    三 什么是操作系统

    精简的说的话,操作系统就是一个协调、管理和控制计算机硬件资源和软件资源的控制程序。

    操作系统的位置

    操作系统位于计算机硬件与应用软件之间,本质也是一个软件。操作系统由操作系统的内核(运行于内核态,管理硬件资源)以及系统调用(运行于用户态,为应用程序员写的应用程序提供系统调用接口)两部分组成,所以,单纯的说操作系统是运行于内核态的,是不准确的。

    细说的话,操作系统应该分成两部分功能

    一:隐藏了丑陋的硬件调用接口,为应用程序员提供调用硬件资源的更好,更简单,更清晰的模型(系统调用接口)。应用程序员有了这些接口后,就不用再考虑操作硬件的细节,专心开发自己的应用程序即可。

    比如,磁盘资源的抽象是文件系统(C盘,D盘,E盘...下的目录及文件),有了文件的概念,我们直接打开文件,读或者写就可以了,无需关心记录是否应该使用修正的调频记录方式,以及当前电机的状态等细节

        需要指出的是,操作系统的实际客户是应用程序(应用程序员负责开发应用程序,因而也可以说应用程序员是操作系统的客户)。应用程序直接与操作系统及其抽象打交道。而最终,用户则是与应用程序(即用户接口)打交道,或者是命令行shell或者是图形界面(比如桌面),它们都只是运行于操作系统之上的应用软件,并不属于操作系统。

    二:将应用程序对硬件资源的竞态请求变得有序化,例如:很多应用软件其实是共享一套计算机硬件,比方说有可能有三个应用程序同时需要申请打印机来输出内容,那么a程序竞争到了打印机资源就打印,然后可能是b竞争到打印机资源,也可能是c,这就导致了无序,打印机可能打印一段a的内容然后又去打印c...,操作系统的一个功能就是将这种无序变得有序。

     

    四 操作系统与普通软件的区别

    1.主要区别是:你不想用暴风影音了你可以选择用迅雷播放器或者干脆自己写一个,但是你无法写一个属于操作系统一部分的程序(时钟中断处理程序),操作系统由硬件保护,不能被用户修改。

    2.操作系统与用户程序的差异并不在于二者所处的地位。特别地,操作系统是一个大型、复杂、长寿的软件,

    • 大型:linux或windows的源代码有五百万行数量级。按照每页50行共1000行的书来算,五百万行要有100卷,要用一整个书架子来摆置,这还仅仅是内核部分。用户程序,如GUI,库以及基本应用软件(如windows Explorer等),很容易就能达到这个数量的10倍或者20倍之多。
    • 长寿:操作系统很难编写,如此大的代码量,一旦完成,操作系统所有者便不会轻易扔掉,再写一个。而是在原有的基础上进行改进。(基本上可以把windows95/98/Me看出一个操作系统,而windows NT/2000/XP/Vista则是两位一个操作系统,对于用户来说它们十分相似。还有UNIX以及它的变体和克隆版本也演化了多年,如System V版,Solaris以及FreeBSD等都是Unix的原始版,不过尽管linux非常依照UNIX模式而仿制,并且与UNIX高度兼容,但是linux具有全新的代码基础)
     

    五 操作系统发展史

    操作系统的发展可以用编程语言的发展来阐述

    机器语言:
        特点:用计算机能看的懂的0和1去写程序
        优点:程序运行速度快
        缺点:开发效率低
        
    汇编语言:
        特点:用一些英文标签代替一串二进制数字去写程序
        优点:比机器语言好一点,操作系统内大量使用汇编语言
              比如关于进程的调度代码,就是用汇编写的
        缺点:开发效率低
        
    高级语言:
        特点:用人能读懂的(英文) 字符去写程序
        优点:开发效率高
        缺点:必须经过翻译才能让计算机识别,导致运行速度慢运行速度慢

        按照翻译的方式分为:
            编译型  把源程序翻译成机器语言(生成可执行文件,比如com或exe文件),然后执行。包含汇编和链接两个过程)
            解释型  解释执行:把一行源程序翻译成机器语言,然后执行;再翻译下一行源程序成机器语言,然后执行。(翻译一句,执行一次。不生成可执行文件)

    第三代计算机的操作系统广泛应用了第二代计算机的操作系统没有的关键技术:多道技术

    cpu在执行一个任务的过程中,若需要操作硬盘,则发送操作硬盘的指令,指令一旦发出,硬盘上的机械手臂滑动读取数据到内存中,这一段时间,cpu需要等待,时间可能很短,但对于cpu来说已经很长很长,长到可以让cpu做很多其他的任务,如果我们让cpu在这段时间内切换到去做其他的任务,这样cpu不就充分利用了吗。这正是多道技术产生的技术背景

    多道技术(详见第七节):

    多道技术中的多道指的是多个程序,多道技术的实现是为了解决多个程序竞争或者说共享同一个资源(比如cpu)的有序调度问题,解决方式即多路复用,多路复用分为时间上的复用和空间上的复用。

    空间上的复用:将内存分为几部分,每个部分放入一个程序,这样,同一时间内存中就有了多道程序。

    时间上的复用:当一个程序在等待I/O时,另一个程序可以使用cpu,如果内存中可以同时存放足够多的作业,则cpu的利用率可以接近100%,类似于我们小学数学所学的统筹方法

    空间上的复用最大的问题是:程序之间的内存必须分割,这种分割需要在硬件层面实现,由操作系统控制。如果内存彼此不分割,则一个程序可以访问另外一个程序的内存,

    首先丧失的是安全性,比如你的qq程序可以访问操作系统的内存,这意味着你的qq可以拿到操作系统的所有权限。

    其次丧失的是稳定性,某个程序崩溃时有可能把别的程序的内存也给回收了,比方说把操作系统的内存给回收了,则操作系统崩溃。

    分时操作系统:
    多个联机终端+多道技术

    20个客户端同时加载到内存,有17在思考,3个在运行,cpu就采用多道的方式处理内存中的这3个程序,由于客户提交的一般都是简短的指令而且很少有耗时长的,索引计算机能够为许多用户提供快速的交互式服务,所有的用户都以为自己独享了计算机资源

    CTTS:麻省理工(MIT)在一台改装过的7094机上开发成功的,CTSS兼容分时系统,第三代计算机广泛采用了必须的保护硬件(程序之间的内存彼此隔离)之后,分时系统才开始流行

    MIT,贝尔实验室和通用电气在CTTS成功研制后决定开发能够同时支持上百终端的MULTICS(其设计者着眼于建造满足波士顿地区所有用户计算需求的一台机器),很明显真是要上天啊,最后摔死了。

    后来一位参加过MULTICS研制的贝尔实验室计算机科学家Ken Thompson开发了一个简易的,单用户版本的MULTICS,这就是后来的UNIX系统。基于它衍生了很多其他的Unix版本,为了使程序能在任何版本的unix上运行,IEEE提出了一个unix标准,即posix(可移植的操作系统接口Portable Operating System Interface)

    后来,在1987年,出现了一个UNIX的小型克隆,即minix,用于教学使用。芬兰学生Linus Torvalds基于它编写了Linux

     

    六 本节重点知识总结

     

    一:操作系统的俩大作用

    作用一:为应用程序提供如何使用硬件资源的抽象
        作用二:把多个程序对硬件的竞争变的有序化(管理应用程序)
     

    二:多路复用

    现代计算机或者网络都是多用户的,多个用户不仅共享硬件,而且共享文件,数据库等信息,共享意味着冲突和无序。

    操作系统主要使用来

    1.记录哪个程序使用什么资源

    2.对资源请求进行分配

    3.为不同的程序和用户调解互相冲突的资源请求。

    我们可将上述操作系统的功能总结为:处理来自多个程序发起的多个(多个即多路)共享(共享即复用)资源的请求,简称多路复用

    多路复用有两种实现方式

    1.时间上的复用

    当一个资源在时间上复用时,不同的程序或用户轮流使用它,第一个程序获取该资源使用结束后,在轮到第二个。。。第三个。。。

    例如:只有一个cpu,多个程序需要在该cpu上运行,操作系统先把cpu分给第一个程序,在这个程序运行的足够长的时间(时间长短由操作系统的算法说了算)或者遇到了I/O阻塞,操作系统则把cpu分配给下一个程序,以此类推,直到第一个程序重新被分配到了cpu然后再次运行,由于cpu的切换速度很快,给用户的感觉就是这些程序是同时运行的,或者说是并发的,或者说是伪并行的。至于资源如何实现时间复用,或者说谁应该是下一个要运行的程序,以及一个任务需要运行多长时间,这些都是操作系统的工作。

    2.空间上的复用

    每个客户都获取了一个大的资源中的一小部分资源,从而减少了排队等待资源的时间。

    例如:多个运行的程序同时进入内存,硬件层面提供保护机制来确保各自的内存是分割开的,且由操作系统控制,这比一个程序独占内存一个一个排队进入内存效率要高的多。

    有关空间复用的其他资源还有磁盘,在许多系统中,一个磁盘同时为许多用户保存文件。分配磁盘空间并且记录谁正在使用哪个磁盘块是操作系统资源管理的典型任务。

    这两种方式合起来便是多道技术


    多道技术:(多道指的是多道/个程序)
        空间上的复用:内存中进入多个程序
        PS:内存必须实现物理级别的隔离
        时间上的复用:cpu要切换:
                        1. 一个程序占用cpu的时间过长
                        2. 一个程序遇道了IO阻塞

                       

     操作系统的发展可以用三句话来说明

    运行效率从高到低
        开发效率从低到高
        学习难度从难到易
       

    以上内容来自于 

  • 相关阅读:
    euler v10 dracut失败
    基于RYU应用开发之负载均衡
    4、网上收集Storm 讲解图
    3、SpringBoot 集成Storm wordcount
    git常用
    3、SpringBoot集成Storm WorldCount
    2、Storm中的一些概念理解
    1、Storm集群安装
    8、Spring-Kafka Recving Messages
    7、Kafka、AMQ、RabbitMQ对比
  • 原文地址:https://www.cnblogs.com/DE_LIU/p/7155204.html
Copyright © 2020-2023  润新知