• 互联网协议入门


    概述

    我们每天都在使用互联网,比如使用微信发送消息,浏览网页,手机看视频。然而,互联网的必要条件就是实现网络设备通信,也就是设备之间怎么收发消息。要想网络设备通信,就需要定制一套协议,彼此都能识别通信的内容,于是"互联网通信协议(Internet Protocol Suite)"就诞生了。

    "互联网协议"是一个庞大、复杂的协议,下面通过为了更好的理解互联网原理,对其大量简化。

    互联网分层

    互联网的实现,分成好几层。每一层都有自己的功能,就像建筑物一样,每一层都靠下一层支持。

    用户接触到的,只是最上面的一层,根本没有感觉到下面的层。要理解互联网,必须从最下层开始,自下而上理解每一层的功能。

    如何分层有不同的模型,有的模型分七层,有的分四层。我觉得,把互联网分成五层,比较容易解释。

    互联网的每一层,都定义了很多协议。这些协议的总称,就叫做"互联网协议"(Internet Protocol Suite)。它们是互联网的核心,下面介绍每一层的功能,主要就是介绍每一层的主要协议。

    实体层

    电脑要组网,第一件事要干什么?当然是先把电脑连起来,可以用光缆、电缆、双绞线、无线电波等方式。

    这就叫做"实体层",它就是把电脑连接起来的物理手段。它主要规定了网络的一些电气特性,作用是负责传送0和1的电信号。

    单纯的0和1没有任何意义,必须规定解读方式:多少个电信号算一组?每个信号位有何意义?于是就出现下面的"链接层"。

    链接层

    "链接层"的功能,它在"实体层"的上方,确定了0和1的分组方式。早期的时候,每家公司都有自己的电信号分组方式。逐渐地,一种叫做"以太网"(Ethernet)的协议,占据了主导地位。

    Header(发送者、接受者、数据类型 固定为18字节)+Data(则是数据包的具体内容。最短为46字节,最长为1500字节)。如果数据很长,就必须分割成多个帧进行发送。

    Header需要包含发送者、接受者,那么设备之间通信怎么标识自己呢?

    以太网规定,连入网络的所有设备,都必须具有"网卡"接口。数据包必须是从一块网卡,传送到另一块网卡。网卡的地址,就是数据包的发送地址和接收地址,这叫做MAC地址。

    每块网卡出厂的时候,都有一个全世界独一无二的MAC地址,长度是48个二进制位,通常用12个十六进制数表示。

    前6个十六进制数是厂商编号,后6个是该厂商的网卡流水号。有了MAC地址,就可以定位网卡和数据包的路径了。

    以太网协议,依靠MAC地址发送数据。理论上,单单依靠MAC地址,上海的网卡就可以找到洛杉矶的网卡了,技术上是可以实现的。

    但是,这样做有一个重大的缺点。以太网采用广播方式发送数据包,所有成员人手一"包",不仅效率低,而且局限在发送者所在的子网络。也就是说,如果两台计算机不在同一个子网络,广播是传不过去的。这种设计是合理的,否则互联网上每一台计算机都会收到所有包,那会引起灾难。

    接下来"网络层"协议就诞生了。

    网络层

    它的作用是引进一套新的地址,使得我们能够区分不同的计算机是否属于同一个子网络。这套地址就叫做"网络地址",简称"网址"。

    "网络层"出现以后,每台计算机有了两种地址,一种是MAC地址,另一种是网络地址。两种地址之间没有任何联系,MAC地址是绑定在网卡上的,网络地址则是管理员分配的。

    如果是同一个子网络,就采用广播方式发送,否则就采用"路由"方式发送。

    IP协议

    规定网络地址的协议,叫做IP协议。它所定义的地址,就被称为IP地址。

    目前,广泛采用的是IP协议第四版,简称IPv4。这个版本规定,网络地址由32个二进制位组成。

    习惯上,我们用分成四段的十进制数表示IP地址,从0.0.0.0一直到255.255.255.255。

    互联网上的每一台计算机,都会分配到一个IP地址。这个地址分成两个部分,前一部分代表网络,后一部分代表主机。处于同一个子网络的电脑,它们IP地址的网络部分必定是相同的。

    但是,问题在于单单从IP地址,我们无法判断网络部分。

    那么,怎样才能从IP地址,判断两台计算机是否属于同一个子网络呢?这就要用到另一个参数"子网掩码"(subnet mask)。

    所谓"子网掩码",就是表示子网络特征的一个参数。它在形式上等同于IP地址,也是一个32位二进制数字,它的网络部分全部为1,主机部分全部为0。

    知道"子网掩码",我们就能判断,任意两个IP地址是否处在同一个子网络。方法是将两个IP地址与子网掩码分别进行`按位与`运算(两个数位都为1,运算结果为1,否则为0),然后比较结果是否相同,如果是的话,就表明它们在同一个子网络中,否则就不是。

    总结一下,IP协议的作用主要有两个,一个是为每一台计算机分配IP地址,另一个是确定哪些地址在同一个子网络。

    IP协议数据包

    根据IP协议发送的数据,就叫做IP数据包。不难想象,其中必定包括IP地址信息。

    但是前面说过,以太网数据包只包含MAC地址,并没有IP地址的栏位。那么是否需要修改数据定义,再添加一个栏位呢?

    回答是不需要,我们可以把IP数据包直接放进以太网数据包的"数据"部分,因此完全不用修改以太网的规格。这就是互联网分层结构的好处:上层的变动完全不涉及下层的结构。

    具体来说,IP数据包也分为"标头"和"数据"两个部分。

    "标头"部分主要包括版本、长度、IP地址等信息,"数据"部分则是IP数据包的具体内容。它放进以太网数据包后,以太网数据包就变成了下面这样。

    IP数据包的"标头"部分的长度为20到60字节,整个数据包的总长度最大为65,535字节。因此,理论上,一个IP数据包的"数据"部分,最长为65,515字节。前面说过,以太网数据包的"数据"部分,最长只有1500字节。因此,如果IP数据包超过了1500字节,它就需要分割成几个以太网数据包,分开发送了

    ARP协议

    关于"网络层",还有最后一点需要说明。

    因为IP数据包是放在以太网数据包里发送的,所以我们必须同时知道两个地址,一个是对方的MAC地址,另一个是对方的IP地址。通常情况下,对方的IP地址是已知的(后文会解释),但是我们不知道它的MAC地址。

    所以,我们需要一种机制,能够从IP地址得到MAC地址。

    这里又可以分成两种情况。第一种情况,如果两台主机不在同一个子网络,那么事实上没有办法得到对方的MAC地址,只能把数据包传送到两个子网络连接处的"网关"(gateway),让网关去处理。

    第二种情况,如果两台主机在同一个子网络,那么我们可以用ARP协议,得到对方的MAC地址。

    ARP协议也是发出一个数据包(包含在以太网数据包中),其中包含它所要查询主机的IP地址,在对方的MAC地址这一栏,填的是FF:FF:FF:FF:FF:FF,表示这是一个"广播"地址。它所在子网络的每一台主机,都会收到这个数据包,从中取出IP地址,与自身的IP地址进行比较。如果两者相同,都做出回复,向对方报告自己的MAC地址,否则就丢弃这个包。
    总之,有了ARP协议之后,我们就可以得到同一个子网络内的主机MAC地址,可以把数据包发送到任意一台主机之上了。

    传输层

    有了MAC地址和IP地址,我们已经可以在互联网上任意两台主机上建立通信。接下来的问题是,同一台主机上有许多程序都需要用到网络,比如,你一边浏览网页,一边与朋友在线聊天。当一个数据包从互联网上发来的时候,你怎么知道,它是表示网页的内容,还是表示在线聊天的内容?

    也就是说,我们还需要一个参数,表示这个数据包到底供哪个程序(进程)使用。这个参数就叫做"端口"(port),它其实是每一个使用网卡的程序的编号。每个数据包都发到主机的特定端口,所以不同的程序就能取到自己所需要的数据。

    "端口"是0到65535之间的一个整数,正好16个二进制位。0到1023的端口被系统占用,用户只能选用大于1023的端口。不管是浏览网页还是在线聊天,应用程序会随机选用一个端口,然后与服务器的相应端口联系。

    "传输层"的功能,就是建立"端口到端口"的通信。相比之下,"网络层"的功能是建立"主机到主机"的通信。只要确定主机和端口,我们就能实现程序之间的交流。因此,Unix系统就把主机+端口,叫做"套接字"(socket)。有了它,就可以进行网络应用程序开发了。

    UDP协议

    现在,我们必须在数据包中加入端口信息,这就需要新的协议。最简单的实现叫做UDP协议,它的格式几乎就是在数据前面,加上端口号。

    UDP数据包,也是由"标头"和"数据"两部分组成。

    "标头"部分主要定义了发出端口和接收端口,"数据"部分就是具体的内容。然后,把整个UDP数据包放入IP数据包的"数据"部分,而前面说过,IP数据包又是放在以太网数据包之中的,所以整个以太网数据包现在变成了下面这样:

    UDP数据包非常简单,"标头"部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包。

    UDP协议的优点是比较简单,容易实现,但是缺点是可靠性较差,一旦数据包发出,无法知道对方是否收到。

    TCP协议

    为了解决这个问题,提高网络可靠性,TCP协议就诞生了。这个协议非常复杂,但可以近似认为,它就是有确认机制的UDP协议,每发出一个数据包都要求确认。如果有一个数据包遗失,就收不到确认,发出方就知道有必要重发这个数据包了。

    因此,TCP协议能够确保数据不会遗失。它的缺点是过程复杂、实现困难、消耗较多的资源。

    TCP数据包和UDP数据包一样,都是内嵌在IP数据包的"数据"部分。TCP数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常TCP数据包的长度不会超过IP数据包的长度,以确保单个TCP数据包不必再分割。

    应用层

    应用程序收到"传输层"的数据,接下来就要进行解读。由于互联网是开放架构,数据来源五花八门,必须事先规定好格式,否则根本无法解读。

    "应用层"的作用,就是规定应用程序的数据格式。

    举例来说,TCP协议可以为各种各样的程序传递数据,比如Email、WWW、FTP等等。那么,必须有不同协议规定电子邮件、网页、FTP数据的格式,这些应用程序协议就构成了"应用层"。

    这是最高的一层,直接面对用户。它的数据就放在TCP数据包的"数据"部分。因此,现在的以太网的数据包就变成下面这样。

  • 相关阅读:
    sql学习2----函数
    网络相关命令
    网络相关概念
    linux学习(2)--指令
    linux学习(1)--基本知识
    Linux学习技巧
    VMware安装Linux
    接口测试
    app测试--DDMS的使用
    app测试--性能测试DDMS
  • 原文地址:https://www.cnblogs.com/CoderHong/p/10063544.html
Copyright © 2020-2023  润新知