• Cmd2001的毒瘤水题题解


    怕不是我再不写题解这题就该成没人做也没人会的千古谜题了......

    T1:


    仔细分析题面,发现相同就是广义SAM上节点相同,相似就是广义SAM上为从根到某个点路径的前缀。、
    直接SAM上跑从根开始,每个点下界为1的最小流即可。
    代码:

      1 #include<iostream>
      2 #include<cstdio>
      3 #include<cstring>
      4 #include<algorithm>
      5 #include<map>
      6 #include<queue>
      7 #define debug cout
      8 using namespace std;
      9 const int maxn=5e3+1e2;
     10 const int inf=0x3f3f3f3f;
     11   
     12 int in[maxn],n,ans,sum;
     13   
     14 namespace NetworkFlow {
     15     int s[maxn<<2],t[maxn<<6],nxt[maxn<<6],f[maxn<<6],dep[maxn<<2],deg[maxn<<2],cnt=1;
     16     int bak[maxn<<2],bcnt;
     17     int st,ed,_s,_t;
     18     inline void coredge(int from,int to,int flow) {
     19         t[++cnt] = to , f[cnt] = flow ,
     20         nxt[cnt] = s[from] , s[from] = cnt;
     21     }
     22     inline void singledge(int from,int to,int flow) {
     23         coredge(from,to,flow) , coredge(to,from,0);
     24     }
     25     inline bool bfs() {
     26         memset(dep,-1,sizeof(dep)) , dep[st] = 0;
     27         queue<int> q; q.push(st);
     28         while( q.size() ) {
     29             const int pos = q.front(); q.pop();
     30             for(int at=s[pos];at;at=nxt[at])
     31                 if( f[at] && !~dep[t[at]] ) {
     32                     dep[t[at]] = dep[pos] + 1 , q.push(t[at]);
     33                 }
     34         }
     35         return ~dep[ed];
     36     }
     37     inline int dfs(int pos,int flow) {
     38         if( pos == ed ) return flow;
     39         int ret = 0 , now = 0;
     40         for(int at=s[pos];at;at=nxt[at])
     41             if( f[at] && dep[t[at]] > dep[pos] ) {
     42                 now = dfs(t[at],min(flow,f[at])) ,
     43                 ret += now , flow -= now ,
     44                 f[at] -= now , f[at^1] += now;
     45                 if( !flow ) return ret;
     46             }
     47         if( !ret ) dep[pos] = -1;
     48         return ret;
     49     }
     50     inline int dinic() {
     51         int ret = 0 , now = 0;
     52         while( bfs() ) {
     53             while( ( now = dfs(st,inf) ) )
     54                 ret += now;
     55         }
     56         return ret;
     57     }
     58     inline int findflow() {
     59         for(int at=s[_t];at;at=nxt[at])
     60             if( t[at] == _s ) return f[at^1];
     61     }
     62     inline void backup() {
     63         memcpy(bak,s,sizeof(s)) , bcnt = cnt;
     64     }
     65     inline void restore() {
     66         memcpy(s,bak,sizeof(bak)) , cnt = bcnt;
     67     }
     68 }
     69   
     70 namespace SAM {
     71     map<int,int> ch[maxn<<1];
     72     int fa[maxn<<1],len[maxn<<1],root,last,cnt;
     73       
     74     inline int NewNode(int ll) {
     75         len[++cnt] = ll;
     76         return cnt;
     77     }
     78     inline void extend(int x) {
     79         int p = last;
     80         int np = NewNode(len[p]+1);
     81         while( p && ch[p].find(x) == ch[p].end() ) ch[p][x] = np , p = fa[p];
     82         if( !p ) fa[np] = root;
     83         else {
     84             int q = ch[p][x];
     85             if( len[q] == len[p] + 1 ) fa[np] = q;
     86             else {
     87                 int nq = NewNode(len[p]+1);
     88                 ch[nq] = ch[q] , fa[nq] = fa[q];
     89                 fa[np] = fa[q] = nq;
     90                 while( p && ch[p][x] == q ) ch[p][x] = nq , p = fa[p];
     91             }
     92         }
     93         last = np;
     94     }
     95     inline void Ex_extend(int* sou,int li) {
     96         last = root;
     97         for(int i=1;i<=li;i++) {
     98             if( ch[last].find(sou[i]) != ch[last].end() ) last = ch[last][sou[i]];
     99             else extend(sou[i]);
    100         }
    101     }
    102 }
    103   
    104 inline void build() {
    105     using SAM::ch;using SAM::cnt;
    106     using namespace NetworkFlow;
    107     _s = cnt * 2 + 1 , _t = _s + 1 , st = _t + 1 , ed = st + 1;
    108     #define cov(x) (x+cnt)
    109     for(int i=1;i<=cnt;i++) {
    110         if( i != 1 ) ++deg[i] , --deg[cov(i)];
    111         for(map<int,int>::iterator it=ch[i].begin();it!=ch[i].end();it++) {
    112             const int tar = it->second;
    113             if( i == 1 ) singledge(_s,tar,1);
    114             else singledge(cov(i),tar,1);
    115         }
    116         if( i != 1 ) singledge(cov(i),_t,1);
    117     }
    118     backup();
    119     for(int i=1;i<=_t;i++) {
    120         if( !deg[i] ) continue;
    121         if( deg[i] > 0 ) singledge(i,ed,deg[i]) , sum += deg[i];
    122         else singledge(st,i,-deg[i]);
    123     }
    124     singledge(_t,_s,inf);
    125 }
    126 inline int getans() {
    127     using namespace NetworkFlow;
    128     int d = dinic();
    129     if( d != sum ) return -1; // No solution .
    130     int ret = findflow();
    131     restore();
    132     st = _t , ed = _s;
    133     int dd = dinic();
    134     return ret - dd;
    135 }
    136  
    137 int main() {
    138     static int m;
    139     SAM::root = SAM::NewNode(0);
    140     scanf("%d",&m);
    141     while(m--) {
    142         scanf("%d",&n);
    143         for(int i=1;i<=n;i++) scanf("%d",in+i);
    144         SAM::Ex_extend(in,n);
    145     }
    146     build();
    147     ans = getans();
    148     printf("%d
    ",ans);
    149     return 0;
    150 }
    View Code


    T2:


    观察操作数量特点,发现可持久化块状数组可过。
    代码:

      1 #include<iostream>
      2 #include<cstdio>
      3 #include<cstring>
      4 #include<algorithm>
      5 using namespace std;
      6 const int maxn=1e6+1e2,maxb=1e3,maxu=1e4+1e2,maxr=1e5+1e2;
      7 
      8 inline int* NewArray() {
      9     static const int maxu = 1e4 + 1e3 + 10;
     10     static int dat[maxu][maxb],cnt;
     11     return dat[cnt++];
     12 }
     13 
     14 struct PersistentBlockedArray {
     15     int* p[maxb];
     16     inline void insert(int pos,int x) { // insert into this array .
     17         if( !p[pos/maxb] ) p[pos/maxb] = NewArray();
     18         p[pos/maxb][pos%maxb] = x;
     19     }
     20     inline void modify(int pos,int x) {
     21         int* t = NewArray();
     22         memcpy(t,p[pos/maxb],sizeof(int)*maxb);
     23         t[pos%maxb] = x , p[pos/maxb] = t;
     24     }
     25     inline int query(int pos) {
     26         return p[pos/maxb][pos%maxb];
     27     }
     28 }dat[maxu];
     29 
     30 int ptr[maxu+maxr],now,cnt;
     31 
     32 inline void roll(int tar) {
     33     ptr[++now] = ptr[tar];
     34 }
     35 inline void modify(int pos,int x) {
     36     dat[++cnt] = dat[ptr[now]] , ptr[now] = cnt;
     37     dat[ptr[now]].modify(pos,x);
     38 }
     39 inline int query(int pos) {
     40     return dat[ptr[now]].query(pos);
     41 }
     42 
     43 namespace IO {
     44     const int BS = 1 << 21;
     45     char ibuf[BS],obuf[BS],*ist,*ied,*oed=obuf;
     46     inline char nextchar() {
     47         if( ist == ied ) ied = ibuf + fread(ist=ibuf,1,BS,stdin);
     48         return ist == ied ? -1 : *ist++;
     49     }
     50     inline int getint() {
     51         int ret = 0 , ch;
     52         while( !isdigit(ch=nextchar()) );
     53         do ret=ret*10+ch-'0'; while( isdigit(ch=nextchar()) );
     54         return ret;
     55     }
     56     inline void getstr(char* s) {
     57         char ch;
     58         while( !isalpha(ch=nextchar()) ) ;
     59         do *s++=ch; while( isalpha(ch=nextchar()) );
     60     }
     61     inline void flush() {
     62         //cerr<<"in flush delta = "<<oed-obuf<<endl;
     63         fwrite(obuf,1,oed-obuf,stdout) , oed = obuf;
     64     }
     65     inline void printchar(const char &x) {
     66         *oed++ = x;
     67         //cerr<<"delta = "<<oed-obuf<<endl;
     68         if( oed == obuf + BS ) flush();
     69     }
     70     inline void printint(int x) {
     71         //cerr<<"x = "<<x<<endl;
     72         static int stk[30],top;
     73         if( !x ) printchar('0');
     74         else {
     75             top = 0;
     76             while(x) stk[++top] = x % 10 , x /= 10;
     77             while(top) printchar('0'+stk[top--]);
     78         }
     79         printchar('
    ');
     80     }
     81 }
     82 using IO::getint;
     83 using IO::printint;
     84 using IO::getstr;
     85 using IO::flush;
     86 
     87 int main() {
     88     static int n,m,lastans,ope;
     89     static char o[20];
     90     n = getint() , m = getint();
     91     for(int i=0,x;i<n;i++) x = getint() , dat[0].insert(i,x);
     92     for(int i=1,p,x,t;i<=m;i++) {
     93         getstr(o);
     94         if( *o == 'Q' ) {
     95             p = ( getint() ^ lastans ) % n;
     96             printint(lastans=query(p));
     97         } else if( *o == 'M' ) {
     98             ++ope , p = ( getint() ^ lastans ) % n , x = getint();
     99             modify(p,x);
    100         } else if( *o == 'R' ) {
    101             ++ope , t = ( getint() ^ lastans ) % ope;
    102             roll(t);
    103         }
    104     }
    105     flush();
    106     return 0;
    107 }
    View Code


    T3:


    大力反演出phi,后面的sigma(i^k)显然是k+1次多项式,拉格朗日插值即可。
    代码:

      1 #include<iostream>
      2 #include<cstdio>
      3 #include<cstring>
      4 #include<algorithm>
      5 #define debug cout
      6 #define bool unsigned char
      7 typedef long long int lli;
      8 using namespace std;
      9 const int maxn=1e6+1e2,lim=1e6,maxk=1e3+1e1;
     10 const int mod=1e9+7;
     11 
     12 int n,k;
     13 
     14 namespace Sieve {
     15     lli sum[maxn],mem[maxn];
     16     bool vis[maxn];
     17     
     18     inline void pre() {
     19         static int prime[maxn/10],cnt;
     20         static bool vis[maxn];
     21         sum[1] = 1;
     22         for(int i=2;i<=lim;i++) {
     23             if( !vis[i] ) prime[++cnt] = i , sum[i] = i - 1;
     24             for(int j=1;j<=cnt&&(lli)i*prime[j]<=lim;j++) {
     25                 const int tar = i * prime[j];
     26                 vis[tar] = 1;
     27                 if( i % prime[j] ) sum[tar] = sum[i] * ( prime[j] - 1 );
     28                 else {
     29                     sum[tar] = sum[i] * prime[j];
     30                     break;
     31                 }
     32             }
     33         }
     34         for(int i=1;i<=lim;i++) sum[i] = ( sum[i] + sum[i-1] ) % mod;
     35     }
     36     inline lli getphi(lli x) {
     37         if( x <= lim ) return sum[x];
     38         const lli t = n / x;
     39         if( vis[t] ) return mem[t];
     40         lli& ret = mem[t]; ret = x * ( x + 1 ) >> 1  , vis[t] = 1;
     41         for(lli i=2,j;i<=x;i=j+1) {
     42             j = x / ( x / i );
     43             ret -= ( j - i + 1 ) * getphi(x/i) % mod , ret %= mod;
     44         }
     45         return ret = ( ret % mod + mod ) % mod;
     46     }
     47 }
     48 
     49 namespace Inter {
     50     lli in[maxk],fac[maxk],facrev[maxk],pprv[maxk],ssuf[maxk],*prv=pprv+1,*suf=ssuf+1;
     51     inline lli fastpow(lli base,int tim) {
     52         lli ret = 1;
     53         while(tim) {
     54             if( tim & 1 ) ret = ret * base % mod;
     55             if( tim >>= 1 ) base = base * base % mod;
     56         }
     57         return ret;
     58     }
     59     inline void init() {
     60         for(int i=1;i<k;i++) in[i] = fastpow(i,k-2);
     61         for(int i=1;i<k;i++) in[i] = ( in[i] + in[i-1] ) % mod;
     62     }
     63     inline lli getmul(int p) {
     64         return p ? fac[p] * facrev[k-p-1] % mod : facrev[k-1];
     65     }
     66     inline lli getval(lli x) {
     67         lli ret = 0;
     68         prv[-1] = 1;
     69         for(int i=0;i<k;i++) prv[i] = prv[i-1] * (x-i+mod) % mod;
     70         suf[k] = 1;
     71         for(int i=k-1;~i;i--) suf[i] = suf[i+1] * (x-i+mod) % mod;
     72         for(int i=0;i<k;i++) {
     73             lli now = prv[i-1] * suf[i+1] % mod;
     74             ret = ret + now * in[i] % mod * getmul(i) % mod , ret %= mod;
     75         }
     76         return ret;
     77     }
     78     inline void getinv() {
     79         static lli inv[maxn];
     80         *fac = 1;
     81         for(int i=1;i<=k;i++) fac[i] = fac[i-1] * i % mod;
     82         inv[k] = fastpow(fac[k],mod-2);
     83         for(int i=k;i;i--) inv[i-1] = inv[i] * i % mod;
     84         for(int i=1;i<=k;i++) inv[i] = inv[i] * fac[i-1] % mod;
     85         for(int i=1;i<=k;i++) fac[i] = fac[i-1] * inv[i] % mod;
     86         facrev[0] = 1;
     87         for(int i=1;i<=k;i++) facrev[i] = facrev[i-1] * ( mod - inv[i] ) % mod;
     88     }
     89 }
     90 inline lli segphi(lli l,lli r) {
     91     return ( Sieve::getphi(r) - Sieve::getphi(l-1) + mod ) % mod;
     92 }
     93 
     94 inline lli calc(lli n) {
     95     lli ret = 0;
     96     for(lli i=1,j;i<=n;i=j+1) {
     97         j = n / ( n / i );
     98         ret += segphi(i,j) % mod * Inter::getval(n/i) % mod , ret %= mod;
     99     }
    100     return ret;
    101 }
    102 
    103 int main() {
    104     scanf("%d%d",&n,&k) , k += 2 , Sieve::pre() , Inter::init() , Inter::getinv();
    105     printf("%lld
    ",calc(n));
    106     return 0;
    107 }
    View Code

    当然那个RYOI是什么意思?就不告诉你!

  • 相关阅读:
    技术分享 | 接口测试之HTTP、HTTPS 抓包分析
    技术分享 | 接口测试之HTTP 协议讲解
    技术分享 | 服务端接口自动化测试, Requests 库的这些功能你了解吗?
    技术分享 | 使用postman发送请求
    电商类项目如何用JMeter 做 Restful 接口压力测试?
    技术分享 | 使用 cURL 发送请求
    技术分享 | 实战详解接口测试请求方式Get、post
    消息队列 RocketMQ 5.0:从消息服务到云原生事件流平台
    函数计算|如何使用层解决依赖包问题?
    RocketMQ 重试机制详解及最佳实践
  • 原文地址:https://www.cnblogs.com/Cmd2001/p/8698088.html
Copyright © 2020-2023  润新知