题面
在平面上有n个点(n≤50),每个点用一对整数坐标表示。例如:当n=4时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一。
这些点可以用k个矩形(1≤k≤4)全部覆盖,矩形的边平行于坐标轴。当k=2时,可用如图二的两个矩形S1,s2覆盖,81,S2面积和为4。问题是当n个点坐标和k给出后,怎样才能使得覆盖所有点的k个矩形的面积之和为最小呢?
约定:覆盖一个点的矩形面积为0;覆盖平行于坐标轴直线上点的矩形面积也为0。各个矩形必须完全分开(边线与顶点也都不能重合)。
题意
有n个点,找k个矩形包含所有点,使k个矩形和面积和最小。
题解
这道题刚拿到手里的时候是挺棘手的,但是我们看数据范围的大小,是可以暴力枚举的,所以我们可以尝试一下暴力枚举。
建图操作
-
maps用来存图
-
ss用来存构建的矩形
-
立flag来统计这种矩形是否建过
-
数据最大是4块矩形,可以开小数组
-
struct maps
{
int x,y;
} mapp[51];
struct ss
{
int l,r,u,d;
bool flag;
} p[5];
判断操作
-
judge函数枚举四种不成立的情况
-
in函数判断范围,便于书写judge函数
bool in(ss a, int x, int y)
{
if (x>=a.l&&x<=a.r&&y>=a.d&&y<=a.u) return 1;
return 0;
}
bool judge(ss a, ss b)
{
if (in(a,b.l,b.u)) return 1;
if (in(a,b.l,b.d)) return 1;
if (in(a,b.r,b.u)) return 1;
if (in(a,b.r,b.d)) return 1;
return 0;
}
dfs操作
-
构建好m个矩形
-
计算面积和
-
每次存最小值
-
搜完结束
void dfs(int num)
{
int value=0;
for (int i=1; i<=m; i++)
{
if (p[i].flag)
{
for (int j=i+1; j<=m; j++)
if (judge(p[i],p[j])) return;
}
value+=(p[i].r-p[i].l)*(p[i].u-p[i].d);
}
if (value>=ans) return;
if (num>n){
ans=value;
return;
}
for (int i=1; i<=m; i++)
{
ss tmp=p[i];
if (p[i].flag==0)
{
p[i].flag=1;
p[i].l=p[i].r=mapp[num].x;
p[i].u=p[i].d=mapp[num].y;
dfs(num+1); p[i]=tmp;
break;
}
else
{
p[i].r=max(p[i].r,mapp[num].x);
p[i].l=min(p[i].l,mapp[num].x);
p[i].u=max(p[i].u,mapp[num].y);
p[i].d=min(p[i].d,mapp[num].y);
dfs(num+1);
p[i]=tmp;
}
}
}
代码
#include<cstdio>
#include<iostream>
using namespace std;
struct maps
{
int x,y;
} mapp[51];
struct ss
{
int l,r,u,d;
bool flag;
} p[5];
int n,m,ans=0x7f7f7f7f;
bool in(ss a, int x, int y)
{
if (x>=a.l&&x<=a.r&&y>=a.d&&y<=a.u) return 1;
return 0;
}
bool judge(ss a, ss b)
{
if (in(a,b.l,b.u)) return 1;
if (in(a,b.l,b.d)) return 1;
if (in(a,b.r,b.u)) return 1;
if (in(a,b.r,b.d)) return 1;
return 0;
}
void dfs(int num)
{
int value=0;
for (int i=1; i<=m; i++)
{
if (p[i].flag)
{
for (int j=i+1; j<=m; j++)
if (judge(p[i],p[j])) return;
}
value+=(p[i].r-p[i].l)*(p[i].u-p[i].d);
}
if (value>=ans) return;
if (num>n){
ans=value;
return;
}
for (int i=1; i<=m; i++)
{
ss tmp=p[i];
if (p[i].flag==0)
{
p[i].flag=1;
p[i].l=p[i].r=mapp[num].x;
p[i].u=p[i].d=mapp[num].y;
dfs(num+1); p[i]=tmp;
break;
}
else
{
p[i].r=max(p[i].r,mapp[num].x);
p[i].l=min(p[i].l,mapp[num].x);
p[i].u=max(p[i].u,mapp[num].y);
p[i].d=min(p[i].d,mapp[num].y);
dfs(num+1);
p[i]=tmp;
}
}
}
int main(void)
{
scanf("%d%d",&n,&m);
for (int i=1; i<=n; i++) scanf("%d%d",&mapp[i].x,&mapp[i].y);
dfs(1);
printf("%d",ans);
return 0;
}