题意:
给出一张图,求让 (4) 对点相互可以到达的最小边权值。仅要求一对之间,一对与另外一对可到达也可不到达。
分析:
斯坦纳树裸题,众所周知斯坦纳树仅能求出这 (4) 对点(关键点)的连通状况,如这 (4) 对点相互都连通,某点和某点连通等。然而让这 (4) 对点连通符合题目要求,但不一定是最优解(我可以让每对点直接相连),所以我们要对斯坦纳树求出的 (dp) 数组进行子集 (dp) 才能得到最优解。
#include <bits/stdc++.h>
using namespace std;
const int N = 50 + 5, M = 1000 + 5;
const int inf = 0x3f3f3f3f;
int n, m, w, tot, cnt, maxsta, head[N], vis[N];
int dp[N][1 << 10], ans[1 << 11];
string a, b;
queue<int> q;
map<string, int> maps;
struct node {
int v, w, next;
} e[M << 1];
void init() {
tot = cnt = 0;
memset(dp, inf, sizeof dp);
memset(head, 0, sizeof head);
memset(vis, 0, sizeof vis);
while (!q.empty()) q.pop();
maps.clear();
}
void addedge(int u, int v, int w) {
e[++cnt].v = v;
e[cnt].w = w;
e[cnt].next = head[u];
head[u] = cnt;
}
void spfa(int sta) {
while (!q.empty()) {
int u = q.front();
q.pop();
vis[u] = 0;
for (int i = head[u]; i; i = e[i].next) {
int v = e[i].v, val = e[i].w;
if (dp[v][sta] > dp[u][sta] + val) {
dp[v][sta] = dp[u][sta] + val;
if (!vis[v]) q.push(v), vis[v] = 1;
}
}
}
}
bool check(int sta) {
for (int i = 0; i < 8; i += 2) {
if ((sta >> i & 1) ^ (sta >> (i + 1) & 1)) return false;
}
return true;
}
int main() {
while (cin >> n >> m) {
init();
for (int i = 1; i <= n; i++) {
cin >> a;
maps[a] = ++tot;
}
for (int i = 1; i <= m; i++) {
cin >> a >> b >> w;
addedge(maps[a], maps[b], w);
addedge(maps[b], maps[a], w);
}
for (int i = 0; i < 8; i++) {
cin >> a;
dp[maps[a]][1 << i] = 0;
}
maxsta = 1 << 8;
for (int sta = 0; sta < maxsta; sta++) {
while(!q.empty()) q.pop();
for (int i = 1; i <= n; i++) {
for (int s = sta; s; s = (s - 1) & sta) {
if(dp[i][sta] > dp[i][s] + dp[i][sta ^ s])
dp[i][sta] = dp[i][s] + dp[i][sta ^ s];
}
if(dp[i][sta] < inf) q.push(i), vis[i] = 1;
}
spfa(sta);
}
memset(ans, inf, sizeof ans);
for (int s = 0; s < maxsta; s++) {
if (!check(s)) continue;
for (int i = 1; i <= n; i++) {
ans[s] = min(ans[s], dp[i][s]);
}
}
for (int s = 0; s < maxsta; s++) {
if (!check(s)) continue;
for (int p = (s - 1) & s; p; p = (p - 1) & s)
ans[s] = min(ans[s], ans[p] + ans[s ^ p]);
}
cout << ans[maxsta - 1] << '
';
}
return 0;
}