[Luogu 3258] JLOI2014 松鼠的新家
LCA + 树上差分。
我呢,因为是树剖求的 LCA,预处理了 DFN(DFS 序),于是简化成了序列差分。
qwq不讲了不讲了,贴代码。
#include <algorithm>
#include <cstdio>
#include <cstring>
#define nullptr NULL
const int MAXN = 300010;
int n, a[MAXN];
namespace HLD
{
int qwq[MAXN];
class Graph
{
private:
bool vis[MAXN];
int num;
struct Node
{
int depth, size, father, son, top, DFN;
}s[MAXN];
struct Edge
{
int to;
Edge *next;
Edge(int to, Edge* next): to(to), next(next){}
~Edge(void)
{
if(next!=nullptr)
delete next;
}
}*head[MAXN];
void Modify(int l, int r, int k)
{
qwq[s[l].DFN] += k;
qwq[s[r].DFN + 1] -= k;
}
void Add(int x, int y)
{
int a, b;
while((a = s[x].top) ^ (b = s[y].top))
if(s[a].depth > s[b].depth)
{
Modify(a, x, 1);
x = s[a].father;
}
else
{
Modify(b, y, 1);
y = s[b].father;
}
if(s[x].depth < s[y].depth)
Modify(x, y, 1);
else
Modify(y, x, 1);
}
public:
Graph(int n): num(0)
{
memset(vis, 0, sizeof vis);
memset(s, 0, sizeof s);
std :: fill(head + 1, head + n + 1, (Edge*)nullptr);
}
~Graph(void)
{
for(int i = 1; i <= n; ++i)
delete head[i];
}
void AddEdges(int u, int v)
{
head[u] = new Edge(v, head[u]);
head[v] = new Edge(u, head[v]);
}
void DFS1(int u, int k)
{
s[u].depth = k;
s[u].size = 1;
int v;
for(Edge* i = head[u]; i != nullptr; i = i -> next)
if(!s[v = i -> to].depth)
{
DFS1(v, k + 1);
s[v].father = u;
s[u].size += s[v].size;
if(s[v].size > s[s[u].son].size)
s[u].son = v;
}
}
void DFS2(int u, int top)
{
s[u].top = top;
s[u].DFN = ++num;
vis[u] = true;
if(s[u].son)
DFS2(s[u].son, top);
int v;
for(Edge* i = head[u]; i != nullptr; i = i -> next)
if(!vis[v = i -> to])
DFS2(v, v);
}
void Walk(int x, int y)
{
Add(x, y);
Modify(y, y, -1);
}
void Find(void)
{
for(int i = 1; i < n; ++i)
qwq[i + 1] += qwq[i];
for(int i = 1; i <= n; ++i)
printf("%d
", qwq[s[i].DFN]);
}
}*G;
void Init(void)
{
G = new Graph(n);
for(int i = 1, u, v; i < n; ++i)
{
scanf("%d %d", &u, &v);
G -> AddEdges(u, v);
}
G -> DFS1(1, 1);
G -> DFS2(1, 1);
}
}
int main(void)
{
scanf("%d", &n);
for(int i = 1; i <= n; ++i)
scanf("%d", &a[i]);
HLD :: Init();
for(int i = 1; i < n; ++i)
HLD :: G -> Walk(a[i], a[i + 1]);
HLD :: G -> Find();
return 0;
}
谢谢阅读。