【BZOJ1692】[Usaco2007 Dec]队列变换
Description
FJ打算带他的N(1 <= N <= 30,000)头奶牛去参加一年一度的“全美农场主大奖赛”。在这场比赛中,每个参赛者都必须让他的奶牛排成一列,然后领她们从裁判席前依次走过。 今年,竞赛委员会在接受队伍报名时,采用了一种新的登记规则:他们把所有队伍中奶牛名字的首字母取出,按它们对应奶牛在队伍中的次序排成一列(比如说,如果FJ带去的奶牛依次为Bessie、Sylvia、Dora,登记人员就把这支队伍登记为BSD)。登记结束后,组委会将所有队伍的登记名称按字典序升序排列,就得到了他们的出场顺序。 FJ最近有一大堆事情,因此他不打算在这个比赛上浪费过多的时间,也就是说,他想尽可能早地出场。于是,他打算把奶牛们预先设计好的队型重新调整一下。 FJ的调整方法是这样的:每次,他在原来队列的首端或是尾端牵出一头奶牛,把她安排到新队列的尾部,然后对剩余的奶牛队列重复以上的操作,直到所有奶牛都被插到了新的队列里。这样得到的队列,就是FJ拉去登记的最终的奶牛队列。 接下来的事情就交给你了:对于给定的奶牛们的初始位置,计算出按照FJ的调整规则所可能得到的字典序最小的队列。
Input
* 第1行: 一个整数:N
* 第2..N+1行: 第i+1行仅有1个'A'..'Z'中的字母,表示队列中从前往后数第i 头奶牛名字的首字母
Output
* 第1..??行: 输出FJ所能得到的字典序最小的队列。每行(除了最后一行)输 出恰好80个'A'..'Z'中的字母,表示新队列中每头奶牛姓名的首 字母
Sample Input
A
C
D
B
C
B
输入说明:
FJ有6头顺次排好队的奶牛:ACDBCB
Sample Output
ABCBCD
输出说明:
操作数 原队列 新队列
#1 ACDBCB
#2 CDBCB A
#3 CDBC AB
#4 CDB ABC
#5 CD ABCB
#6 D ABCBC
#7 ABCBCD
题解:题意让我们比较正序的后缀和倒序的后缀,那我们不妨将原串的倒序复制一遍,在连接到原串上,然后只要求一遍后缀数组就好了。
根据贪心策略,只要当前正序的后缀大(小)于倒序的后缀,那么先选择小的那个一定最优
我AC后才发现别人在正序和倒序之间都加了一个极小值,本人感觉对于此题没什么必要~
#include <cstdio> #include <cstring> #include <iostream> using namespace std; const int maxn=60010; int n,m,tot; int sa[maxn],r[maxn],rank[maxn],ra[maxn],rb[maxn],st[maxn]; char str[5]; void work() { int i,j,p,*x=ra,*y=rb; for(i=0;i<n;i++) st[x[i]=r[i]]++; for(i=1;i<m;i++) st[i]+=st[i-1]; for(i=n-1;i>=0;i--) sa[--st[x[i]]]=i; for(j=p=1;p<n;j<<=1,m=p) { for(p=0,i=n-j;i<n;i++) y[p++]=i; for(i=0;i<n;i++) if(sa[i]>=j) y[p++]=sa[i]-j; for(i=0;i<m;i++) st[i]=0; for(i=0;i<n;i++) st[x[y[i]]]++; for(i=1;i<m;i++) st[i]+=st[i-1]; for(i=n-1;i>=0;i--) sa[--st[x[y[i]]]]=y[i]; for(swap(x,y),p=i=1,x[sa[0]]=0;i<n;i++) x[sa[i]]=(y[sa[i-1]]==y[sa[i]]&&y[sa[i-1]+j]==y[sa[i]+j])?p-1:p++; } for(i=1;i<n;i++) rank[sa[i]]=i; } int main() { int i; scanf("%d",&n); for(i=0;i<n;i++) { scanf("%s",str); r[i]=r[2*n-i-1]=str[0]-'A'+1; m=max(m,r[i]+1); } n=n*2+1; work(); int L=0,R=n>>1; while(L+R<n-1) { if(rank[L]<rank[R]) printf("%c",r[L++]+'A'-1); else printf("%c",r[R++]+'A'-1); if(++tot==80) { tot=0; printf(" "); } } return 0; }