• POJ 3744 Scout YYF I


    分段的概率DP+矩阵快速幂

                           Scout YYF I
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 4180   Accepted: 1076

    Description

    YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's base. After overcoming a series difficulties, YYF is now at the start of enemy's famous "mine road". This is a very long road, on which there are numbers of mines. At first, YYF is at step one. For each step after that, YYF will walk one step with a probability of p, or jump two step with a probality of 1-p. Here is the task, given the place of each mine, please calculate the probality that YYF can go through the "mine road" safely.

    Input

    The input contains many test cases ended with EOF.
    Each test case contains two lines.
    The First line of each test case is N (1 ≤ N ≤ 10) and p (0.25 ≤ p ≤ 0.75) seperated by a single blank, standing for the number of mines and the probability to walk one step.
    The Second line of each test case is N integer standing for the place of N mines. Each integer is in the range of [1, 100000000].

    Output

    For each test case, output the probabilty in a single line with the precision to 7 digits after the decimal point.

    Sample Input

    1 0.5
    2
    2 0.5
    2 4

    Sample Output

    0.5000000
    0.2500000

    Source

    POJ Monthly Contest - 2009.08.23, Simon 

    如果不用快速幂(TLE的)。。。。。

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 
     6 using namespace std;
     7 
     8 int n,mine[15];
     9 double  p,d1,d2,d3,ans;
    10 
    11 int main()
    12 {
    13     while(scanf("%d%lf",&n,&p)!=EOF)
    14     {
    15         for(int i=1;i<=n;i++)
    16         {
    17             scanf("%d",mine+i);
    18         }
    19         sort(mine,mine+1+n);
    20         if(mine[1]==1)
    21         {
    22             printf("0.0000000
    "); continue;
    23         }
    24         else if(n==0)
    25         {
    26             printf("1.0000000
    "); continue;
    27         }
    28         bool flag=false;
    29         for(int i=1;i<n;i++)
    30         {
    31             if(mine[i]+1==mine[i+1])
    32             {
    33                 printf("0.0000000
    "); flag=true; break;
    34             }
    35         }
    36         if(flag==true) continue;
    37         ans=1.;
    38         for(int i=1;i<=n;i++)
    39         {
    40             int st=mine[i-1]+1,ed=mine[i];
    41             d2=0.,d1=1.;
    42             for(int j=st+1;j<=ed;j++)
    43             {
    44                 d3=d1*p+d2*(1-p);
    45                 d2=d1; d1=d3;
    46             }
    47             ans*=(1-d3);
    48         }
    49         printf("%.7lf
    ",ans);
    50     }
    51     return 0;
    52 }

    快速幂的。。。。

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 
     6 using namespace std;
     7 
     8 struct Matrix
     9 {
    10     double a[2][2];
    11     Matrix() {}
    12     Matrix(double A,double B,double C,double D)
    13     {
    14         a[0][0]=A;a[0][1]=B;a[1][0]=C;a[1][1]=D;
    15     }
    16     Matrix operator* (const Matrix& b) const
    17     {
    18          Matrix temp;
    19          memset(temp.a,0,sizeof(temp.a));
    20          for(int i=0;i<2;i++)
    21          {
    22              for(int j=0;j<2;j++)
    23              {
    24                  for(int k=0;k<2;k++)
    25                  {
    26                      temp.a[i][j]+=a[i][k]*b.a[k][j];
    27                  }
    28              }
    29          }
    30          return temp;
    31     }
    32     Matrix Show()
    33     {
    34         for(int i=0;i<2;putchar(10),i++) for(int j=0;j<2;putchar(' '),j++) cout<<a[i][j];
    35     }
    36 };
    37 
    38 Matrix QuickPow(Matrix m,int n)
    39 {
    40     Matrix E(1,0,0,1);
    41     while(n>1)
    42     {
    43         if(n&1) E=E*m;
    44         m=m*m;
    45         n=n>>1;
    46     }
    47     E=E*m;
    48     return E;
    49 }
    50 
    51 int n,mine[20];
    52 double p,ans;
    53 
    54 int main()
    55 {
    56     while(scanf("%d%lf",&n,&p)!=EOF)
    57     {
    58         for(int i=1;i<=n;i++)
    59             scanf("%d",mine+i);
    60         sort(mine,mine+n+1);
    61         if(mine[1]==1)
    62         {
    63             printf("0.0000000
    "); continue;
    64         }
    65         else if(n==0)
    66         {
    67             printf("1.0000000
    "); continue;
    68         }
    69         bool flag=false;
    70         for(int i=1;i<n;i++)
    71         {
    72             if(mine[i]+1==mine[i+1])
    73             {
    74                 printf("0.0000000
    "); flag=true; break;
    75             }
    76         }
    77         if(flag==true) continue;
    78         ans=1.;
    79         for(int i=1;i<=n;i++)
    80         {
    81             Matrix m(p,1-p,1,0);
    82             m=QuickPow(m,mine[i]-mine[i-1]-1);
    83             ans*=1-m.a[0][0];
    84         }
    85         printf("%.7lf
    ",ans);
    86     }
    87     return 0;
    88 }
  • 相关阅读:
    P6944[ICPC2018 WF]Gem Island【数学期望,dp】
    YbtOJ森林之和【dp】
    CF809DHitchhiking in the Baltic States【FhqTreap】
    YbtOJ序列计数【组合数学,莫队】
    Loj#2460「POI2010」桥Bridges【网络流,欧拉回路】
    CF802CHeidi and Library(hard)【费用流】
    YbtOJ相似子串【SA,RMQ,二分】
    YbtOJ连通的图【结论,线性基】
    YbtOJ毒瘤染色【LCT】
    go 结构体的实例化方式, 如果结构体的字段类型是:指针,slice,和map的零值都是nil需要先初始化才能使用
  • 原文地址:https://www.cnblogs.com/CKboss/p/3393646.html
Copyright © 2020-2023  润新知